定 價:38 元
叢書名:國外優(yōu)秀數(shù)學(xué)著作原版系列
- 作者:[澳] 芬納.拉爾森 著
- 出版時間:2020/6/1
- ISBN:9787560391199
- 出 版 社:哈爾濱工業(yè)大學(xué)出版社
- 中圖法分類:O174.1
- 頁碼:177
- 紙張:膠版紙
- 版次:1
- 開本:16
本書是自世界著名大學(xué)劍橋大學(xué)出版社引進(jìn)的英文版數(shù)學(xué)教程,中文書名可譯為《實(shí)分析演講集》作者是芬納.拉爾森教授,他任教于澳大利亞阿德萊德大學(xué)。劍橋大學(xué)出版社對本書的介紹是這樣寫的:
本書是為本科學(xué)生準(zhǔn)備的對實(shí)分析的嚴(yán)謹(jǐn)?shù)慕榻B,從全序域的定理和一些集合論知識開始。本書避免了任何關(guān)于實(shí)數(shù)的先入之見,只把它們當(dāng)作全序域的元素來研究。包括所有的標(biāo)準(zhǔn)主題,以及對三角函數(shù)的適當(dāng)處理,許多人認(rèn)為這些內(nèi)容都是理所應(yīng)當(dāng)?shù)摹淖詈髱渍绿峁┝艘粋詳細(xì)的、基于實(shí)例的對應(yīng)用在實(shí)線上的微分方程的度量空間的介紹。
作者的闡述簡明扼要,幫助學(xué)生抓住要點(diǎn)。本書包括200多個不同難度的練習(xí)題,其中許多題都涉及正文中的理論內(nèi)容。該書非常適合本科二年級學(xué)生和需要掌握實(shí)分析基礎(chǔ)知識的更高年級的學(xué)生閱讀。
This book is a rigorous introduction to real analysis, suitable for a one semester course at the second-year undergraduate level, based on my experience of teaching this material many times in Australia and Canada. My aim is to give a treatment that is brisk and concise, but also reasonably complete and as rigorous as is practicable, starting from the axioms for a complete ordered field and a little set theory.
Along with epsilons and deltas, I emphasise the alternative language of neighbourhoods, which is geometric and intuitive and provides an introduction to topological ideas. I have included a proper treatment of the trigonometric functions. They are sophisticated objects, not to be taken for granted. This topic is an instructive application of the theory of power series and other earlier parts of the book. Also, it involves the concept of a group, which most students won't have seen in the context of analysis before.
目錄(翻譯如下)
1.數(shù),集合與函數(shù)(自然數(shù),整數(shù)和有理數(shù),集合,函數(shù))
2.實(shí)數(shù)(實(shí)數(shù)的全序域,完整性的結(jié)果,可數(shù)集合與非可數(shù)集合)
3.序列(收斂數(shù)列,單調(diào)序列,級數(shù),子序列和柯西序列)
4.開集,閉集和緊集
5.連續(xù)性(函數(shù)的極限,連續(xù)函數(shù),緊集和區(qū)間上的連續(xù)函數(shù),單調(diào)函數(shù))
6.微分(微分函數(shù),中值定理)
7.積分(微積分基本定理,黎曼積分,自然對數(shù)和指數(shù)函數(shù))
8.函數(shù)的序列和級數(shù)(點(diǎn)態(tài)收斂與一致收斂,冪級數(shù),泰勒級數(shù),圓函數(shù))
9.度量空間(度量空間的例子,度量空間的收斂與完整性)
10.收縮原理(熱脹冷縮的原理,畢卡(Picard)定理)