因素空間是信息、智能和數(shù)據(jù)科學(xué)的數(shù)學(xué)基礎(chǔ)理論。本書將介紹因素空間如何將智能生成的統(tǒng)一機制落實到各行各業(yè),開展全民智能孵化的洛神工程。本書主要內(nèi)容包括:介紹因素的范式特質(zhì)和智能孵化洛神工程的內(nèi)容;介紹因素空間對智能生成機制的落實細則;介紹因素顯隱的理論,將現(xiàn)有人工智能數(shù)學(xué)算法歸結(jié)到回歸和優(yōu)化兩大方面,突出支持向量機與因素
本書不僅梳理了人工智能技術(shù)在科學(xué)各領(lǐng)域中的廣泛應(yīng)用,還深入分析了其對科學(xué)生產(chǎn)力的推動作用,以及在倫理、法律和社會層面可能引發(fā)的討論和問題。書中匯集了國際專家的研究成果,為讀者提供了一個全面了解人工智能在科學(xué)研究中應(yīng)用的窗口,展現(xiàn)了人工智能技術(shù)如何推動科學(xué)的創(chuàng)新與進步,并對未來的研究方向提出了深刻的見解。
本書清晰而深入地介紹了智能運維技術(shù)的基礎(chǔ)及其應(yīng)用。全書共7章:第1章介紹智能運維技術(shù)的基本概念和發(fā)展歷程;第2章介紹數(shù)字信號處理的基本方法及數(shù)據(jù)處理方法;故障特征提取作為機械故障診斷和狀態(tài)監(jiān)測的關(guān)鍵,相關(guān)內(nèi)容將在第3章介紹;第4章、第5章分別介紹基于淺層學(xué)習(xí)和基于深度學(xué)習(xí)的智能故障診斷及剩余壽命預(yù)測方法;第6章介紹智能
在這本書中,作者著力討論了幾種獲取機器學(xué)習(xí)和數(shù)據(jù)挖掘算法性能的相關(guān)知識的方法。作者展示了如何再次利用這些知識來選擇、組合、編撰和調(diào)整算法和模型,從而為數(shù)據(jù)挖掘提供更快、更有效的解決方案,幫助研究人員改進算法,并開發(fā)能夠自我改進的學(xué)習(xí)系統(tǒng)。本書的新版在舊版基礎(chǔ)上就內(nèi)容做了非常大的擴充。作者介紹了最新的自動機器學(xué)習(xí)方法,闡
本書是作者對自2008年起系統(tǒng)分析"機器能否獲得認知發(fā)展能力"這一問題而不得不先訴諸于"人工智能基礎(chǔ)問題"或"認知哲學(xué)"方面的研究其結(jié)果的總結(jié)。本書立論開宗明義:將機器認知發(fā)展問題簡化為"物理機器的概念產(chǎn)生問題"。據(jù)此,作者遂建立起自己對"概念體系"的理論和對"心靈哲學(xué)"的基本觀念,之后使用符合哲學(xué)討論習(xí)慣的方式進行論
教育信息化促進了教育測評理念的變革,人工智能時代的教育更加關(guān)注以智能技術(shù)驅(qū)動的學(xué)習(xí)者認知分析與個性化學(xué)習(xí)的訴求。本書遵循"理論-方法-應(yīng)用"研究范式,探索人工智能時代的學(xué)習(xí)認知分析的新理論與新方法。
本書針對推薦系統(tǒng)中的二部圖、社交網(wǎng)絡(luò)和知識圖譜的圖結(jié)構(gòu)模式,研究基于圖表示學(xué)習(xí)的深度推薦系統(tǒng)。通過挖掘圖信息中的隱性關(guān)系和高階關(guān)系,使用圖學(xué)習(xí)的方式探索用戶和產(chǎn)品的潛在關(guān)聯(lián),彌補相關(guān)推薦系統(tǒng)研究在挖掘用戶之間或者產(chǎn)品之間隱性關(guān)系方面的不足,形成一系列合理而且有效的推薦技術(shù)。增加推薦系統(tǒng)輸入的多樣性,運用社交網(wǎng)絡(luò)和知識圖
圖像融合技術(shù)可將多源圖像的互補特征進行綜合,以得到更加完整和準(zhǔn)確的場景描述,從而彌補單一傳感器單幅圖像的不足,是一種廣泛應(yīng)用的圖像預(yù)處理技術(shù),如多攝像頭拍照、微光夜視、醫(yī)學(xué)診斷、遙感等應(yīng)用領(lǐng)域。本書以多源圖像融合技術(shù)為主要內(nèi)容,在研究圖像尺度分析、遷移學(xué)習(xí)、深度學(xué)習(xí)算法與模型的基礎(chǔ)上,針對多聚焦圖像融合、多模態(tài)醫(yī)學(xué)圖像
數(shù)系的擴充始終貫穿于數(shù)學(xué)理論的發(fā)展之中. 本書利用交互式定理證明工具Coq,在Morse-Kelley公理化集合論形式化系統(tǒng)下, 給出中國科學(xué)與技術(shù)大學(xué)汪芳庭教授在其《數(shù)學(xué)基礎(chǔ)》中采用算術(shù)超濾分數(shù)構(gòu)造實數(shù)的機器證明系統(tǒng),包括超濾空間與算術(shù)超濾的基本概念、超濾變換以及用算術(shù)超濾構(gòu)造算術(shù)模型的形式化實現(xiàn),構(gòu)建了非標(biāo)準(zhǔn)實數(shù)模
本書主要包含以下內(nèi)如:最優(yōu)化問題的簡介,凸分析基礎(chǔ),無約束優(yōu)化的理論及線搜索算法框架,信賴域算法,線搜索收斂性分析及收斂速度分析,半光滑牛頓算法,共軛梯度算法,約束優(yōu)化理論及延伸理論,罰方法,增廣拉格朗日算法及算法在實際問題(支持向量機模型、超圖匹配)中的應(yīng)用。本書對知識點的分析緊密結(jié)合當(dāng)前研究前沿問題,并通過對應(yīng)用問