t-范數(shù)(三角范數(shù),也稱為三角模)是在[0,1]上定義的一類特殊算子。它己被廣泛地應用到概率度量空間、半群理論、信息聚合、模糊數(shù)學理論、多值邏輯、人工智能等多個領(lǐng)域中。本書系統(tǒng)地論述了t-范數(shù)概念、性質(zhì)、構(gòu)造等理論,介紹了該領(lǐng)域的新研究成果。本書注重理論與應用的結(jié)合,引入了大量國內(nèi)外t-范數(shù)理論的研究成果,以達到由淺入
本書是一本用英文寫成的數(shù)學類教材,是作者基于多年的科研和全英文教學經(jīng)驗編寫而成的。全書分為10章。前3章是預備知識和方法,包含了某些數(shù)學軟件程序、某些函數(shù)和積分公式以及平面系統(tǒng)的相圖等內(nèi)容。后7章是針對7個著名方程所描述的非線性波進行數(shù)值模擬和推導其表達式,包含KdV方程的行波、mKdVI方程的孤立波和周期波、mKdV
本書較系統(tǒng)地討論了非線性中立型泛函微分方程數(shù)值方法的穩(wěn)定性、收斂性和耗散性。本書共8章,第1章介紹了中立型泛函微分方程數(shù)值分析的應用背景和研究進展;第2章致力于中立型泛函微分方程理論解的穩(wěn)定性分析,為其算法分析奠定基礎(chǔ);第3章在一般的Banach空間中研究數(shù)值方法的穩(wěn)定性和收斂性;第4—6章分別討論了三種特殊類型中立型
本書第二版根據(jù)教育部高等學校數(shù)學與統(tǒng)計學教學指導委員會制定的經(jīng)濟管理類本科數(shù)學基礎(chǔ)課程教學基本要求,結(jié)合作者多年在微積分課程的教學實踐與教學改革所積累的教學經(jīng)驗,并借鑒國內(nèi)外同類教材的精華編寫而成。全書共11章,內(nèi)容包括:函數(shù)、極限與連續(xù)、導數(shù)與微分、微分中值定理與導數(shù)應用、不定積分、定積分及其應用、無窮級數(shù)、向量代數(shù)
"本書是根據(jù)黃永彪、楊社平主編的《一元函數(shù)微積分》編寫而成的配套輔導教材。全書包括函數(shù)、函數(shù)極限、連續(xù)函數(shù)、導數(shù)與微分、中值定理與導數(shù)的應用、不定積分和定積分等內(nèi)容。 本書按照主教材的章節(jié)順序編排內(nèi)容,便于學生同步學習使用,各章節(jié)的基本框架為: 基本要求學習本節(jié)知識的要求和需要掌握的程度及考查的要點. 知識要點梳
本教材的前兩冊涵蓋了通常的“高等數(shù)學”和“工科數(shù)學分析”的內(nèi)容,同時注重數(shù)學思想的傳遞、數(shù)學理論的延展、科學方法的掌握等。第三冊則是在現(xiàn)代分析學的高觀點與框架下編寫的,不僅開闊了學生的視野,讓學生盡早領(lǐng)略現(xiàn)代數(shù)學的魅力,而且做到了與傳統(tǒng)的數(shù)學分析內(nèi)容有機融合。像實數(shù)連續(xù)性理論、一致連續(xù)性與一致收斂性、可積性理論等較難的
第二卷為多變量情形。第二卷包括八章。第一章詳論多元函數(shù)及其導數(shù),包括線性微分型及其積分,補充了數(shù)學分析中最基本的概念的嚴密證明;第二章在線性代數(shù)方面為現(xiàn)代數(shù)學分析的基礎(chǔ)準備了充分的材料;第三章敘述多元微分學的發(fā)展及應用,包括隱函數(shù)存在定理的嚴密證明,多元變換與映射的基本理論,曲線、曲面的微分幾何基礎(chǔ)知識以及外微分型等基
第一卷為單變量情形。第一卷包括九章,前三章主要介紹函數(shù)、極限、微分和積分的基本概念及其運算;第四章介紹微積分在物理和幾何中的應用;第五章講述泰勒展開式;第六章講述數(shù)值方法;第七章介紹無窮和與無窮乘積的概念;第八章為三角級數(shù);第九章是與振動有關(guān)的最簡單類型的微分方程。本書包含大量的例題和習題,有助于讀者理解本書的內(nèi)容。
本書介紹了求解動力學常微分方程的時間積分方法,主要包括Newmark類方法、級數(shù)類方法、Runge-Kutta等高階方法、高精度時間積分方法、復合時間積分方法、非線性系統(tǒng)的保能量方法、非光滑系統(tǒng)的時間步進方法、非線性動力學系統(tǒng)的無條件穩(wěn)定時間積分方法、時變系統(tǒng)的時間積分方法、模態(tài)疊加方法和時間積分方法的聯(lián)合使用策略。書
《微分方程模型與解法》主要介紹了常微分方程(組)和偏微分方程(組)描述的一些常用模型的導出及其常用求解方法,內(nèi)容包括常微分方程模型與解法、一階偏微分方程模型與解法、二階線性偏微分方程的分類與化簡、波動方程與解法、熱傳導方程與解法、積分變換法、偏微分方程其他解法、附錄等。
本書是作者在電子科技大學講授十余年高等微積分(數(shù)學分析)的基礎(chǔ)上編寫而成的,是為需要深厚數(shù)理基礎(chǔ)的高素質(zhì)創(chuàng)新型理工科人才編寫一本數(shù)學分析教材。全書共六章,內(nèi)容包括:點列極限與實數(shù)理論、函數(shù)極限與連續(xù)函數(shù)、微分學、積分學、級數(shù)理論、常微分方程。每一章均配有大量的典型例題和具有一定難度的習題,書后還附有參考答案與提示。本書
本書是數(shù)學物理方程的入門教材,主要介紹三個經(jīng)典方程(波動方程、熱傳導方程和Laplace方程)定解問題的導出及求解。通過介紹一般二階線性偏微分方程的分類與化簡,指明這三個方程代表著數(shù)學物理方程的三種類型。針對不同的定解問題,介紹了如分離變量法、積分變換法、通解法和Green函數(shù)法等常規(guī)的求解方法,還介紹了由分離變量法求
本書使用中學生熟悉的三角測量知識,通過測量樹高、山高的實際例子,直觀地推導出了微積分的基本定理“牛頓-萊布尼茨公式”,并逐步講解了微分方程的基本特征,從初等三角學的角度呈現(xiàn)了微分方程的意義。本書行文簡潔、圖例豐富、啟發(fā)性強,可作為了解微分方程的科普讀物,也適合相關(guān)專業(yè)的學生閱讀和參考。
"本教材主要內(nèi)容包括:分析基礎(chǔ):函數(shù),極限,連續(xù);微積分學:一元微積分,多元微積分;向量代數(shù)與空間解析幾何;無窮級數(shù);常微分方程等高等數(shù)學核心內(nèi)容知識點總結(jié)及精選習題。 全書分為11個章節(jié),第4~6章,第6~9章均包括知識點總結(jié)及練習、綜合例題、自測題和研究生入學試題及高等數(shù)學競賽試題選編等內(nèi)容,第5章、第10章分別
本書以反散射理論、Riemann-Hilbert方法、Deift-Zhou非線性速降法和速降法為分析工具,系統(tǒng)闡述這些方法在可積系統(tǒng)、正交多項式和隨機矩陣理論方面的應用.主題部分取材于Deift、McLaughlin、Biondini、Jenkins等一些學者近年來**前沿成果.內(nèi)容主要包括Riemann-Hilber
深水中的Benjamin-Ono(BO)方程是一類非常重要的非線性色散方程,具有廣泛的物理背景和應用背景。該類方程存在一類具有有限分式的代數(shù)孤立子,并且屬于可積系統(tǒng)。本書給出該類方程的物理背景并闡述其怪波解,著重研究幾種重要類型的BO方程的數(shù)學理論,其中包括在能量空間和Bourgain空間上的整體解的存在性、**性和低
本書是結(jié)合作者多年的教學經(jīng)驗,根據(jù)理工科“數(shù)學物理方程”教學大綱的要求及數(shù)學類、大氣科學類等專業(yè)的需要而編寫的。本書以方法為主線,內(nèi)容包括典型模型定解問題的建立、方程的分類與標準型、行波法、分離變量法、積分變換法和格林函數(shù)法等。在此基礎(chǔ)上,介紹了研究偏微分方程定性理論的極值原理和能量方法,探討了貝塞爾函數(shù)與勒讓德函數(shù)的
作為此前出版的《非線性常微分方程邊值問題》研究內(nèi)容的后續(xù)進展,本書是作者十余年來在常微分方程和時滯微分方程周期軌道方面所作研究工作的總結(jié).在介紹臨界點理論和指標理論的基礎(chǔ)上,對常用的指標理論和指標理論作出推廣,提出和論證了Zn指標理論和Sn指標理論,拓展了應用范圍.對不同類型的時滯微分方程通過選定相應的Hilbert空
本書是關(guān)于超奇異積分的數(shù)值計算及其應用方面的專著,全書共8章:第1章為引言,簡要介紹超奇異積分的由來,使讀者可以輕松地閱讀本書;第2章闡述邊界歸化方法和典型域上的超奇異積分方程,詳細介紹區(qū)間上和圓周上超奇異積分方程的引入,以及求解超奇異積分方程的經(jīng)典方法;第3章介紹超奇異積分的定義,并闡述不同的定義在一定條件下是等價的
常微分方程穩(wěn)定性理論和Lyapunov函數(shù)方法的重要價值與意義在一百多年來的發(fā)展歷史中已經(jīng)得到了充分的證明,形成了從理論到應用的一個非常豐富的體系!冻N⒎址匠谭(wěn)定性基本理論及應用》較系統(tǒng)地介紹了常微分方程穩(wěn)定性理論和Lyapunov函數(shù)方法的基礎(chǔ)內(nèi)容和應用,從中讀者可基本了解常微分方程穩(wěn)定性理論的發(fā)展狀況和研究方法。