本書包括試題分冊、解析分冊兩冊,每冊分為高等數(shù)學、線性代數(shù)、概率統(tǒng)計三部分,設有一元函數(shù)微分學及其應用、一元函數(shù)積分學及其應用、空間解析幾何、多元函數(shù)微分學及其應用等二十三章。
本書主要介紹了非線性振動與動力系統(tǒng)的相關理論。第一章介紹了微分方程和動力系統(tǒng)的基本概念以及二維流的基本結(jié)果,如Poincare-Bendixson定理、Peixoto定理、指標理論等;第二章介紹了貫穿全書的四個重要例子:VanderPo1方程、Duffing方程、Lorenz方程和彈子球問題以及它們的一些重要的混沌性質(zhì)
《基于核心素養(yǎng)下的數(shù)學教學研究與思考》是一部學術專著。該書以培養(yǎng)學生數(shù)學素養(yǎng)為核心,注重學生思維能力的培養(yǎng),以基礎知識為基礎,蘊德育于數(shù)學課堂,旨在提升孩子全面發(fā)展。作者將從教15年來對課改的思考、教學中的實踐案例以及在課堂教學中如何滲透德育進行總結(jié)和歸納,分析現(xiàn)階段學科核心素養(yǎng)、數(shù)學課堂教學與德育之間的關系,提出基于
這個公式改變了“世界”!--萬千奇妙物理現(xiàn)象的背后,都有一個E=mc2。閱讀本書,與日本知名科普專家一起,了解“世界第一有名的公式”的不可思議,踏上揭示世界真相的物理學探秘之旅。愛因斯坦獨創(chuàng)了掀起物理學革命的相對論,而E=mc2這一公式是其核心!笆澜缟献钣忻墓健,究竟厲害在哪里?加熱馬克杯的話就會變重?跑得越快體
本書收錄了《元宵佳節(jié)“WK”趣味數(shù)學有獎問題》《一些正棱錐的邊染色計數(shù)問題研究》《例談2,5在數(shù)學競賽題目中的使用》《數(shù)學教師需要增強課堂教學民主意識》《基于“四基”“四能”的一節(jié)三角函數(shù)復習課》等文章。
本書為開放教育教材,涉及:隨機事件與概率,隨機變量及其數(shù)字特征,統(tǒng)計推斷。
本書以受控過程下連續(xù)抽樣檢驗動態(tài)優(yōu)化為目標,闡述了兩類優(yōu)化方法。在分析受控過程控制需求的基礎上,確定受控過程能力表達方法。對連續(xù)抽樣檢驗進行性能分析,基于性能曲線特征建立受控過程質(zhì)量控制最優(yōu)方案。給出受控過程下,四類連續(xù)抽樣檢驗方案的最優(yōu)方案參數(shù)計算公式。為滿足過程控制中的成本控制需求,建立同時滿足質(zhì)量、成本和風險約束
本書從函數(shù)、極限與連續(xù)入手,介紹了導數(shù)與微分,并簡述了微分學的應用,進而通過對定積分與不定積分的分析,探討了定積分的應用,之后對多元函數(shù)的微分與多元函數(shù)的積分進行了剖析,最后從常數(shù)項級數(shù)、冪級數(shù)等方面對無窮級數(shù)進行了探討。
本書共分十一章,內(nèi)容包括:數(shù)學的本質(zhì)與教育意義、數(shù)學方法論與數(shù)學教學、數(shù)學文化的研究層面、數(shù)學文化研究與大學數(shù)學教育、數(shù)學方法論下的數(shù)學素質(zhì)教育、數(shù)學教學創(chuàng)造性能力的培養(yǎng)、數(shù)學教學效率的提高、大學數(shù)學教學與現(xiàn)代教育技術的整合、大學數(shù)學教學模式創(chuàng)新——虛擬創(chuàng)新教學、大學數(shù)學教學模式創(chuàng)新——翻轉(zhuǎn)課堂教學、新時代背景下的大學
本書分三編,內(nèi)容包括:流形上的散度公式、流形上的Green公式、流形上的旋度公式。