《華章數(shù)學原版精品系列:代數(shù)(英文版·第2版)》是作者在代數(shù)領域數(shù)十年的智慧和經(jīng)驗的結晶。書中既介紹了矩陣運算、群、向量空間、線性算子、對稱等較為基本的內容,又介紹了環(huán)、模型、域、伽羅瓦理論等較為高深的內容。本書對于提高數(shù)學理解能力,增強對代數(shù)的興趣是非常有益處的。此外,本書的可閱讀性強,書中的習題也很有針對性,能讓讀者很快地掌握分析和思考的方法。
作者結合這20年來的教學經(jīng)歷及讀者的反饋,對本版進行了全面更新,更強調對稱性、線性群、二次數(shù)域和格等具體主題。本版的具體更新情況如下:
新增球面、乘積環(huán)和因式分解的計算方法等內容,并補充給出一些結論的證明,如交錯群是簡單的、柯西定理、分裂定理等。
修訂了對對應定理、su2 表示、正交關系等內容的討論,并把線性變換和因子分解都拆分為兩章來介紹。
新增大量習題,并用星號標注出具有挑戰(zhàn)性的習題。
《華章數(shù)學原版精品系列:代數(shù)(英文版·第2版)》在麻省理工學院、普林斯頓大學、哥倫比亞大學等著名學府得到了廣泛采用,是代數(shù)學的經(jīng)典教材之一。
Michael Artin,當代領袖型代數(shù)學家與代數(shù)幾何學家之一,美國麻省理工學院數(shù)學系榮譽退休教授。1990年至1992年,曾擔任美國數(shù)學學會主席。由于他在交換代數(shù)與非交換代數(shù)、環(huán)論以及現(xiàn)代代數(shù)幾何學等方面做出的貢獻,2002年獲得美國數(shù)學學會頒發(fā)的Leroy P.Steele終身成就獎。Artin的主要貢獻包括他的逼近定理、在解決沙法列維奇-泰特猜測中的工作以及為推廣“概形”而創(chuàng)建的“代數(shù)空間”概念。
Preface
1 Matrices
1.1 The Basic Operations
1.2 Row Reduction
1.3 The Matrix Transpose
1.4 Deternunants
1.5 Permutations
1.6 Other Formulas for the Determinant
Exercises
2 Groups
2.1 Laws ofComposition
2.2 Groups and Subgroups
2.3 Subgroups of the Additive Group of Intege
2.4 Cyclic Groups
2.5 Homomorphisms
2.6 Isomorphisms
2.7 Equivalence Relations and Partitions
2.8 Cosets
2.9 Modular Arithmetic
2.10 The Correspondence Theorem
2.11 Ptoduct Groups
2.12 Quotient Groups
Exercises
3 VectorSpaces
3.1 SubspacesoflRn
3.2 Fields
3.3 Vector Spaces
3.4 Bases and Dimension
3.5 Computing with Bases
3.6 DirectSums
3.7 Infinite-DimensionalSpaces
Exercises
4 LinearOperators
4.1 The Dimension Formula
4.2 The Matrix of a Linear Transformation
4.3 Linear Operators
4.4 Eigenvectors
4.5 The Characteristic Polynomial
4.6 Triangular and DiagonaIForms
4.7 JordanForm
Exercises
5 Applications ofLinear Operators
5.1 OrthogonaIMatrices and Rotations
5.2 Using Continuity
5.3 Systems ofDifferentialEquations
5.4 The Matrix Exponential
Exercises
6 Symmetry
6.1 Symmetry ofPlane Figures
6.2 Isometries
6.3 Isometries ofthe Plane
6.4 Finite Groups of Orthogonal Operators on the Pl
6.5 Discrete Groups oflsometries
6.6 Plane Crystallographic Groups
6.7 Abstract Symmetry: Group Operations
6.8 The Operation on Cosets
6.9 The Counting Formula
6.10 Operations on Subsets
6.11 Permutation Representations
6.12 Finite Subgroups ofthe Rotation Group
Exercises
7 More Group Theory
7.1 Cayley's Theorem
7.2 The Class Equation
7.3 Groups
7.4 The Class Equation of the IcosahedraIGroup
7.5 Conjugationin the Symmetric Group
7.6 Normalizers
7.7 The Sylow Theorems
7.8 Groups ofOrder12
7.9 TheFreeGroup
7.10 Generators and Relations
7.11 The Todd-Coxeter Algorithm
Exercises
8 BilinearForms
8.1 BilinearForms
8.2 SymmetricForms
……
9 Linear Groups
10 Group Representations
11 Rings
12 Factoring
13 Quadratic Number Fields
14 Linear Algebra in a Ring
15 Fields
16 Galois theory