Probability & Statistics(概率論與數(shù)理統(tǒng)計(jì))
定 價(jià):25 元
叢書(shū)名:21世紀(jì)高等學(xué)校數(shù)學(xué)系列教材
- 作者:干曉蓉 著
- 出版時(shí)間:2009/1/1
- ISBN:9787307066922
- 出 版 社:武漢大學(xué)出版社
- 中圖法分類(lèi):O21
- 頁(yè)碼:224
- 紙張:膠版紙
- 版次:1
- 開(kāi)本:16K
《Probability&Statistics(理工類(lèi)本科生)》是作者在英國(guó)留學(xué)期間完成的自編教材基礎(chǔ)上,結(jié)合國(guó)內(nèi)雙語(yǔ)課教學(xué)的實(shí)際而編寫(xiě)成的,是一本概率統(tǒng)計(jì)的入門(mén)教材。全書(shū)共分八章,內(nèi)容包括概率公理、隨機(jī)變量及其分布、多元隨機(jī)變量、期望與方差、大數(shù)定律與中心極限定理、隨機(jī)抽樣、估計(jì)問(wèn)題和假設(shè)檢驗(yàn)。各章取材注重實(shí)際,力求敘述清晰易懂,書(shū)中配有適量的例題和習(xí)題,書(shū)末附有習(xí)題答案,便于教學(xué)和學(xué)生自學(xué)。
《Probability & Statistics(理工類(lèi)本科生)》可以作為高等院校工科各專(zhuān)業(yè)、理科非數(shù)學(xué)專(zhuān)業(yè)以及管理與經(jīng)濟(jì)類(lèi)等專(zhuān)業(yè)本科生的概率統(tǒng)計(jì)雙語(yǔ)課程教材,也可以供相關(guān)科技人員參考。
數(shù)學(xué)是研究現(xiàn)實(shí)世界中數(shù)量關(guān)系和空間形式的科學(xué),長(zhǎng)期以來(lái),人們?cè)谡J(rèn)識(shí)世界和改造世界的過(guò)程中,數(shù)學(xué)作為一種精確的語(yǔ)言和一個(gè)有力的工具,在人類(lèi)文明的進(jìn)步和發(fā)展中,甚至在文化的層面上,一直發(fā)揮著重要的作用,作為各門(mén)科學(xué)的重要基礎(chǔ),作為人類(lèi)文明的重要支柱,數(shù)學(xué)科學(xué)在很多重要的領(lǐng)域中已起到關(guān)鍵性、甚至決定性的作用,數(shù)學(xué)在當(dāng)代科技、文化、社會(huì)、經(jīng)濟(jì)和國(guó)防等諸多領(lǐng)域中的特殊地位是不可忽視的,發(fā)展數(shù)學(xué)科學(xué),是推進(jìn)我國(guó)科學(xué)研究和技術(shù)發(fā)展,保障我國(guó)在各個(gè)重要領(lǐng)域中可持續(xù)發(fā)展的戰(zhàn)略需要.高等學(xué)校作為人才培養(yǎng)的搖籃和基地,對(duì)大學(xué)生的數(shù)學(xué)教育,是所有的專(zhuān)業(yè)教育和文化教育中非;A(chǔ)、非常重要的一個(gè)方面,而教材建設(shè)是課程建設(shè)的重要內(nèi)容,是教學(xué)思想與教學(xué)內(nèi)容的重要載體,因此顯得尤為重要。
為了提高高等學(xué)校數(shù)學(xué)課程教材建設(shè)水平,由武漢大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院與武漢大學(xué)出版社聯(lián)合倡議,策劃,組建21世紀(jì)高等學(xué)校數(shù)學(xué)課程系列教材編委會(huì),在一定范圍內(nèi),聯(lián)合多所高校合作編寫(xiě)數(shù)學(xué)課程系列教材,為高等學(xué)校從事數(shù)學(xué)教學(xué)和科研的教師,特別是長(zhǎng)期從事教學(xué)且具有豐富教學(xué)經(jīng)驗(yàn)的廣大教師搭建一個(gè)交流和編寫(xiě)數(shù)學(xué)教材的平臺(tái),通過(guò)該平臺(tái),聯(lián)合編寫(xiě)教材,交流教學(xué)經(jīng)驗(yàn),確保教材的編寫(xiě)質(zhì)量,同時(shí)提高教材的編寫(xiě)與出版速度,有利于教材的不斷更新,極力打造精品教材。
本著上述指導(dǎo)思想,我們組織編撰出版了這套21世紀(jì)高等學(xué)校數(shù)學(xué)課程系列教材,旨在提高高等學(xué)校數(shù)學(xué)課程的教育質(zhì)量和教材建設(shè)水平。
參加21世紀(jì)高等學(xué)校數(shù)學(xué)課程系列教材編委會(huì)的高校有:武漢大學(xué)、華中科技大學(xué)、云南大學(xué)、云南民族大學(xué)、云南師范大學(xué)、昆明理工大學(xué)、武漢理工大學(xué)、湖南師范大學(xué)、重慶三峽學(xué)院、襄樊學(xué)院、華中農(nóng)業(yè)大學(xué)、福州大學(xué)、長(zhǎng)江大學(xué)、咸寧學(xué)院、中國(guó)地質(zhì)大學(xué)、孝感學(xué)院、湖北第二師范學(xué)院、武漢工業(yè)學(xué)院、武漢科技學(xué)院,武漢科技大學(xué)、仰恩大學(xué)(福建泉州)、華中師范大學(xué)、湖北工業(yè)大學(xué)等20余所院校。
高等學(xué)校數(shù)學(xué)課程系列教材涵蓋面很廣,為了便于區(qū)分,我們約定在封首上以漢語(yǔ)拼音首寫(xiě)字母縮寫(xiě)注明教材類(lèi)別,如:數(shù)學(xué)類(lèi)本科生教材,注明:SB;理工類(lèi)本科生教材,注明:LGB;文科與經(jīng)濟(jì)類(lèi)教材,注明:WJ;理工類(lèi)碩士生教材,注明:LGs,如此等等,以便于讀者區(qū)分。
1 The Axioms of Probability
1.1 Experiments
1.2 Sample Spaces and Events
1.3 Frequency and Probability
1.4 Equally Likely Outcomes
1.5 Conditional Probability
1.6 Independence
Exercise 1
2 Random Variables and Their Distributions
2.1 Random Variables
2.2 Discrete Random Variables
2.3 Cumulative Distribution Functions
2.4 Continuous Random Variables
2.5 Functions of Random Variables
Exercise 2
3 Multivariate Random Variables
3.1 Two——Dimensional Random Variables
3.2 Marginal Distributions
3.3 Conditional Distributions
3.4 Independence
3.5 Distribution of Special Functions
Exercise 3
4 The Mean and Variance
4.1 Expectations of random variables
4.2 Variances of random variables
4.3 Covariance & Correlation
4.4 Miment and Covariance Matrix
Exercise
5 The Law of Large Numbers and the Central Limit Theorem
5.1 Chebyshevs Inequality
5.2 Law of Large numbers
5.3 The Central Limit Theorem
Exercise 5
6 Random Sampling
6.1 Random Sampling
6.1.1 Populations and Samples
6.1.2 Random Sample
6.2 Some Important Statistics
6.2.1 The Sample Mean and the Sample Variance
6.2.2 The Sample Moments
6.3 Sampling Distributions
6.3.1 The Chi-Square distribution
6.3.2 t-Distribution
6.3.3 F-Distribution
6.3.4 Quantile of Order tt
6.3.5 Sampling Distributions of the Sample Mean and the Sample Variance
Exercise 6
7 Estimation Problems
7.1 Introduction
7.2 Point Estimation
7.2.1 The Method of Moments
7.2.2 The Method of Maximum Likelihood
7.3 The Particular Properties of Estimators
7.3.1 Unbiased Estimators
7.3.2 Efficiency
7.3.3 Consistency
7.4 Interval Estimation
7.4.1 The Estimation of Mean
7.4.2 The Estimation of Variance
Exercise 7
8 Hypothesis Testing
8.1 Introduction
8.2 Tests Concerning Means
8.2.1 One Normal Population
8.2.2 To Normal Populations
8.3 Tests Concerning Variances
8.3.1 One Normal Population
8.3.2 Two Normal Populations
8.4 The Relationship Between Hypothesis Testing and Confidence Intervals
8.5 One Sample: Thex2 Goodness of Fit Test
Exercise 8
Appendix A Some Important Distributions
Appendix B Statistical Tables
Appendix C Answer To Exercise
Appendix D 中英文對(duì)照表
Bibliography
1 The Axioms of Probability
1.1 Experiments
An experiment is any action or process that generates observations. Although the word experiment generally suggests a planned or carefully controlled laboratory testing situation, we use it here in a much wider sense. Thus, experiments that may be of interest include tossing a coin once or several times, selecting a card or cards from a deck, weighing a loaf of bread, or measuring the compressive strengths of different steel beam, etc. The experiments may be quite simple or they may be composite. In any case, the result of an experiment is a single outcome from a basic set of such potential outcomes.
Probability theory deals with situations in which there is a degree of randomness or chance in the outcome of some experiment. We are specifically concerned with experiments that can be repeated under identical circumstances. In such a situation it is desirable to know the chance of such an outcome of occurring.Here are a few illustrative examples:(El) Choose two people at random from a group of five people.
What is the probability that a particular person is in the selected pair?
(E2) A coin is tossed three times. What is the probability that exactly two heads are obtained?
。‥3) Choose a positive integer n = ( 1, 2, 3," ) by means of the following experiment. Toss a fair coin repeatedly until you get head and let n be the number of tosses up to and include the first toss resulting in head.What is the probability that n is an odd number?