代數(shù)幾何和算術(shù)代數(shù)幾何是現(xiàn)代數(shù)學(xué)的重要分支,與數(shù)學(xué)的許多分支有著廣泛的聯(lián)系,如數(shù)論、解析幾何、微分幾何、交換代數(shù)、代數(shù)群、拓?fù)鋵W(xué)等。代數(shù)幾何是任何一個希望在數(shù)學(xué)學(xué)科有所作為的學(xué)生和研究人員需要了解的一門學(xué)科,而?臻g是代數(shù)幾何最重要的一類對象。
《模手冊(卷3)(英文版)》是由50多位活躍在代數(shù)幾何領(lǐng)域的世界知名專家撰寫的綜述性文章組成。每一篇文章針對一個專題,作者力求將第一手、最新鮮的材料呈現(xiàn)給讀者,通過介紹該專題中基礎(chǔ)知識、例子和結(jié)論,帶領(lǐng)讀者快速進(jìn)入該領(lǐng)域,并了解領(lǐng)域內(nèi)重要問題;同時(shí)介紹最新的進(jìn)展,使得讀者能夠很快捕捉到該領(lǐng)域最主要的文獻(xiàn)。
VolumeⅠ
Preface
Carrril Farkas and Ian Morrison
Logarithmic geometry and moduli
Dan Abramovich, Q/le Chen, Danny Gillam, Yuhao Huang, Martin Olsson,
Invariant Hilbert schemes
Algebraic and tropical curves: comparing their moduli spaces
A superficial working guide to deformations and moduli
Moduli spaces of hyperbolic surfaces and their Weil-Petersson volumes
Equivariant geometry and the cohomology of the moduli space of curves
Tautological and non-tautological cohomology of the moduli space of curves
Alternate compactifications of moduli spaces of curves
The cohomology of the moduli space ofAbelian varieties
Moduli of K3 surfaces and irreduable symplectic manifolds
Normal functions and the geometry of moduli spaces of curves VolumeⅠ
Preface
Carrril Farkas and Ian Morrison
Logarithmic geometry and moduli
Dan Abramovich, Q/le Chen, Danny Gillam, Yuhao Huang, Martin Olsson,
Invariant Hilbert schemes
Algebraic and tropical curves: comparing their moduli spaces
A superficial working guide to deformations and moduli
Moduli spaces of hyperbolic surfaces and their Weil-Petersson volumes
Equivariant geometry and the cohomology of the moduli space of curves
Tautological and non-tautological cohomology of the moduli space of curves
Alternate compactifications of moduli spaces of curves
The cohomology of the moduli space ofAbelian varieties
Moduli of K3 surfaces and irreduable symplectic manifolds
Normal functions and the geometry of moduli spaces of curves
Volume Ⅱ
Parameter spaces of curves
Global topology of the Hitchin system
Differential forms on singular spaces, the minimal model program, and hyperboliaty of moduli stacks
Contractible extremal rays on MO,n
Moduli of varieties of general type
Singularities of stable varieties
Soliton equations and the Riemann-Schottky problem
GIT and moduli with a twist
Good degenerations of moduli spaces
Localization in Gromov-Witten theory and Orbifold Gromov-Witten theory
From WZW models to modular functors
Shimura varieties and moduli
The Torelli locus and special subvarieties
……
Volume Ⅲ