《奇異積分和相關(guān)論題》是一部為分析專業(yè)的研究生量身定做的入門書籍!镀娈惙e分和相關(guān)論題:英文(影印版)》是以歐幾里得空間為背景,清晰明確的闡釋了奇異積分及其相關(guān)話題。后三章有大量作者在調(diào)和分析方面做出的科研成果和繼續(xù)研究所需要的背景材料。 讀者對象:數(shù)學(xué)專業(yè)高年級本科生和科研人員。
preface
1 hardy-littlewood maximal operator
1.1 hardy-littlewood maximal operator
1.2 calderdn-zygmund decomposition
1.3 marcinkiewicz interpolation theorem
1.4 weighted norm inequalities
1.5 notes and references
2 singular integral operators
2.1 calderon-zygmund singular integral operators
2.2 singular integral operators with homogeneouskernels
2.3 singular integral operators with rough kernels
2.4 commutators of singular integral operators
2.5 notes and references
3 fractional integral operators
3.1 riesz potential
preface
1 hardy-littlewood maximal operator
1.1 hardy-littlewood maximal operator
1.2 calderdn-zygmund decomposition
1.3 marcinkiewicz interpolation theorem
1.4 weighted norm inequalities
1.5 notes and references
2 singular integral operators
2.1 calderon-zygmund singular integral operators
2.2 singular integral operators with homogeneouskernels
2.3 singular integral operators with rough kernels
2.4 commutators of singular integral operators
2.5 notes and references
3 fractional integral operators
3.1 riesz potential
3.2 weighted boundedness of riesz potential
3.3 fractional integral operator with homogeneouskernels
3.4 weighted boundedness of tω,a
3.5 commutators of riesz potential
3.6 commutators of fractional integrals with roughkernels
3.7 notes and references
4 oscillatory singular integrals
4.1 oscillatory singular integrals with homogeneous smoothkernels
4.2 oscillatory singular integrals with rough kernels
4.3 oscillatory singular integrals with standardkernels
4.4 multilinear oscillatory singular integrals with roughkernels
4.5 multilinear oscillatory singular integrals with standardkernels
4.6 notes and references
5 littlewood-paley operator
5.1 littlewood-paley g function
5.2 weighted littlewood-paley theory
5.3 littlewood-paley g function with rough kernel
5.4 notes and references
bibliography
index