隱函數(shù)定理是分析的最主要定理之一,是偏微分方程和數(shù)值分析的最基本工具。鄧契夫等編著的《隱函數(shù)和解映射》在經(jīng)典框架及其外研究隱函數(shù)的本質(zhì),主要側(cè)重于研究變分問(wèn)題解映射的性質(zhì)。本書自稱體系,并將大量散落的材料綜合起來(lái),旨在提供一個(gè)研究這門學(xué)科的參考書籍。第一章以一種學(xué)生和本科生微積分的老師新聞樂(lè)見的方式講述經(jīng)典隱函數(shù)定理,以下的章節(jié)在難度上逐漸增加,將隱映射看作是一種關(guān)聯(lián)定義的,而非方程定義的。書中講述了數(shù)值分析和優(yōu)化中的應(yīng)用。本書是本學(xué)科學(xué)術(shù)上的巨大成果,注定會(huì)成為這門學(xué)科的一本標(biāo)準(zhǔn)參考書。
PrelaceAcknowledgementsChapter 1.Functions defined implicitly by equations 1A.The classical inverse function theorem 1B.The classical implicit function theorem 1C.Calmness 1D.Lipschitz continuity 1E.Lipschitz invertibility from approximations 1E Selections of multi.valued inverses 1G.Selections from nonstrict differentiabilityChapter 2.Implicit function theorems for variational problems 2A.Generalized equations and variational problems 2B.Implicit function theorems for generalized equations 2C.Ample parameterization and parametric robustness 2D.Semidifferentiable functions 2E.Variational inequalities with polyhedral convexity 2E Variational inequalities with monotonicity 2G.Consequences for optimizationChapter 3.Regularity properties of set-valued solution mappings 3A.Set convergence 3B.Continuity of set-valued mappings 3C.Lipschitz continuity of set—valued mappings 3D.Outer Lipschitz continuity 3E.Aubin property,metric regularity and linear openness 3F.Implicit mapping theorems with metric regularity 3G.Strong metric regularity 3H.Calmness and metric subregularity 3I.Strong metric subregularityChapter 4.Regularity properties through generalized derivatives 4A.Graphical differentiation 4B.Derivative criteria for the Aubin property 4C.Characterization of strong metric subregularity 4D.Applications tO parameterized constraint systems 4E.Isolated calmness for variational inequalities 4F.Single—valued Iocalizations for variational inequalities 4G.Special nonsmooth inverse function theorems 4H.Results utilizing coderivativesChapter 5.Regularity in infinite dimensions 5A.Openness and positively homogeneous mappings 5B.Mappings with closed and convex graphs 5C.Sublinear mappings 5D.The theorems of Lyusternik and Graves 5E.Metric regularity in metric spaces 5F.Strong metric regularity and implicit function theorems 5G.The Bartle-Graves theorem and extensionsChapter 6.Applications in numerical variational analysis 6A.Radius theorems and conditioning 6B.Constraints and feasibility 6C.Iterative processes for generalized equations 6D.An implicit function theorem for Newton’S iteration 6E.Galerkin’S method for quadratic minimization 6F.Approximations in optimal control References NotationIndex