熱工學(xué)--工程熱力學(xué)和傳熱學(xué)(英文版)(Thermal Engineering--Engineering Thermodynamics and Heat Transfer)
定 價(jià):88 元
當(dāng)前圖書已被 2 所學(xué)校薦購過!
查看明細(xì)
- 作者:邱琳,馮妍卉
- 出版時(shí)間:2025/2/1
- ISBN:9787030788504
- 出 版 社:科學(xué)出版社
- 中圖法分類:TK122
- 頁碼:216
- 紙張:
- 版次:1
- 開本:16
本書是綜合性熱工學(xué)理論及技術(shù)的基礎(chǔ)教材,對(duì)工程熱力學(xué)和傳熱學(xué)的內(nèi)容進(jìn)行了精選,力求做到傳統(tǒng)的經(jīng)典內(nèi)容與現(xiàn)代科學(xué)技術(shù)的發(fā)展相結(jié)合,并選編了適量密切聯(lián)系工程實(shí)際的例題、思考題及習(xí)題,滿足專業(yè)人才培養(yǎng)的深度和廣度需求。全書共兩部分,13章:工程熱力學(xué)(Engineering Thermodynamics)部分主要介紹工程熱力學(xué)的基本概念和基本定律、常用工質(zhì)的熱物理性質(zhì)、基本熱力過程與典型熱力循環(huán)分析及提髙循環(huán)效率的途徑;傳熱學(xué)(Heat Transfer)部分主要介紹導(dǎo)熱、對(duì)流換熱、輻射換熱的基本規(guī)律、求解方法以及控制熱量傳遞過程的技術(shù)措施,換熱器的計(jì)算方法。
更多科學(xué)出版社服務(wù),請(qǐng)掃碼獲取。
2007年9月-2012年7月,中國(guó)科學(xué)院工程熱物理研究所,博士
2021年7月至今,北京科技大學(xué),教授
Contents
Part 1 Engineering Thermodynamics
Chapter 1 Introduction 1
1.1 Energy 1
1.1.1 Definition of energy 1
1.1.2 Main forms of energy 1
1.1.3 Properties of energy 2
1.2 Energy source 3
1.2.1 Definition of energy sources 3
1.2.2 Classification of energy sources 3
1.2.3 Hydrogen energy and fuel cell technology 9
1.2.4 Advanced coal to chemicals industry (ACCI) 10
1.2.5 Solar photovoltaic technology 11
1.2.6 Distributed energy supply technology 12
1.3 Conversion and utilization of energy 12
1.4 Research contents of fundamentals of thermal engineering 14
1.4.1 Engineering thermodynamics 14
1.4.2 Heat transfer 14
Exercises 15
Answers 15
Chapter 2 Basic concepts 17
2.1 Review: introduction 17
2.2 Introduction to the basic concept 17
2.3 Thermodynamic system 17
2.3.1 Important concepts and definitions 17
2.3.2 Classification of thermodynamic systems 18
2.4 Equilibrium state and state parameters 19
2.4.1 Basic quantities of state 19
2.4.2 Basic state parameters for description 20
2.5 Equation of state and state parameter coordinate diagram 21
2.6 Quasi-static process and reversible process 22
2.6.1 Quasi-equilibrium process (quasi-static process) 22
2.6.2 Engineering application of quasi-static process 24
2.6.3 Reversible process 24
2.7 Work and heat 25
2.7.1 Work and indicator diagram 25
2.7.2 Heat, entropy, and thermogram 26
2.7.3 Thermodynamic cycle 27
2.8 Summary 28
Exercises 29
Answers 29
Chapter 3 First law of thermodynamics 31
3.1 Review: basic concepts 31
3.2 Introduction to the first law of thermodynamics 31
3.3 Storage energy of thermal system 31
3.4 The essence of the first law of thermodynamics 32
3.5 The expression of the first law of thermodynamics for closed system 33
3.5.1 Fundamental thermodynamic relation 33
3.5.2 Two expressions of the first law of thermodynamics for closed system 33
3.6 Stable flow energy equation of open system 35
3.6.1 Definition of stable flow 35
3.6.2 Push work and flow work 35
3.6.3 Energy equation 36
3.6.4 Technical work 38
3.6.5 Unsteady flow process 39
3.7 The application of stable flow energy equation 39
3.7.1 Simplification of stable flow energy equation 39
3.7.2 Power machine and compressor 40
3.7.3 Heat exchanger (heat exchange equipment) 41
3.7.4 Adiabatic throttling 44
3.8 Summary 44
3.8.1 Essence 44
3.8.2 Energy equation 44
3.8.3 Process quantity and state quantity 45
Exercises 47
Answers 47
Chapter 4 Property and process of the ideal gas 49
4.1 Review: first law of thermodynamics 49
4.2 Introduction to property and process of the ideal gas 49
4.3 Ideal gas state equation 49
4.3.1 Ideal gas 49
4.3.2 Ideal gas state equation 50
4.4 Thermal capacity, thermodynamic energy, entropy, and enthalpy of ideal gases 51
4.4.1 Definition of thermal capacity 51
4.4.2 Specific heat capacity at constant pressure and specific heat capacity at constant volume of ideal gas 52
4.4.3 Calculation of the heat capacity of the ideal gas 53
4.4.4 Linear relationship of average heat capacity 54
4.5 Thermodynamics, entropy, and enthalpy of ideal gases 54
4.6 Ideal gas mixture 56
4.6.1 Partial pressure and Dalton’s law 56
4.6.2 Partial volume and partial volume law 57
4.6.3 Ingredients of mixed gases 57
4.6.4 Specific heat capacity of mixed gas 59
4.7 Purpose of thermal process of ideal gas 59
4.7.1 The basis for studying the thermal process 60
4.7.2 The process of constant volume 60
4.7.3 The process of constant pressure 63
4.7.4 The process of constant temperature 64
4.7.5 Adiabatic process 65
4.7.6 Polytropic process 66
4.8 Summary 71
Exercises 72
Answers 73
Chapter 5 Second law of thermodynamics 76
5.1 Review: the first law of thermodynamics 76
5.2 Introduction to the second law of thermodynamics 76
5.3 The direction of spontaneous process and the expression of the second law of thermodynamics 76
5.3.1 Directionality and irreversibility of thermal process 76
5.3.2 The expression of the second law of thermodynamics 78
5.4 Carnot cycle and Carnot theorem 80
5.4.1 Thermodynamic cycle 80
5.4.2 Carnot cycle 81
5.4.3 Carnot theorem 83
5.5 Entropy 85
5.5.1 Derivation of entropy 85
5.5.2 Clausius inequality and entropy change of irreversible process 87
5.5.3 Expression of entropy in Clausius inequality and Clausius equality 87
5.6 Summary 90
Exercises 90
Answers 91
Chapter 6 Water vapor and wet air 93
6.1 Review: gaseous working medium 93
6.2 Review: water vapor 93
6.3 Water vapor generation process 93
6.3.1 Basic concepts 93
6.3.2 Isobaric heating process of water (five states) 94
6.4 State parameters of water vapor 96
6.4.1 Determination of the state parameters of the wet saturated steam zone 97
6.4.2 Water and water vapor meters 98
6.5 Basic thermal process of water vapor 100
6.5.1 Thermal process of water vapor 100
6.5.2 Isobaric process of water vapor 101
6.6 The nature of wet air 102
6.6.1 Basic definitions 102
6.6.2 Dew point 103
6.7 Summary 104
Exercises 104
Answers 105
Chapter 7 Steam and gas power cycles 108
7.1 Review: power cycle 108
7.2 Steam power plant cycles 108
7.2.1 Rankine cycle 108
7.2.2 Network and thermal efficiency of Rankine cycle 109
7.2.3 Effects of steam parameters on Rankme cycle thermal efficiency Ill
7.2.4 Other ways to improve the thermal efficiency of steam power cycle 113
7.3 Piston internal combustion engine cycle 115
7.3.1 Piston engine actual cycle 116
7.3.2 Ideal cycle of piston engine 116
7.4 Ideal cycle of gas turbine plant 117
7.4.1 Open-type gas turbme(actual situation) 118
7.4.2 Ideal closed gas turbine 118
7.5 Summary 120
Exercises 120
Answers 120
Chapter 8 Refrigeration equipment and cycle 123
8.1 Refrigeration 123
8.2 Air compression refrigeration cycle 123
8.2.1 The principle of air compression refrigeration cycle 123
8.2.2 p-V diagram and T-s diagram of air compression refrigeration cycle 124
8.2.3 Regenerative air compression refrigeration unit 125
8.2.4 Disadvantages of air compression refrigeration cycle 126
8.3 Vapor compression refrigeration cycle 126
8.4 Absorption refrigeration cycle 128
8.4.1 Characteristics of absorption refrigeration 128
8.4.2 Absorption refrigeration equipment 128
8.5 Heat pump 129
Exercises 130
Answers 130
Part 2 Heat Transfer
Chapter 9 Basic ways of heat transfer 133
9.1 Thermal conduction 134
9.1.1 Basic concepts in thermal conduction 134
9.1.2 Definition of thermal resistance 136
9.2 Thermal convection 136
9.2.1 Newton’s cooling law 137
9.2.2 Convection thermal resistance 138
9.3 Thermal radiation 139
9.3.1 Basic concepts in thermal radiation 139
9.3.2 Definition of thermal radiation 139
9.4 Heat transfer process 140
9.4.1 The steady-state heat transfer process through the plane wall 141
9.4.2 Heat transfer coefficient 142
9.5 Summary 143
Exercises 143
Answers 145
Chapter 10 Thermal conduction 147
10.1 The theoretical basis of thermal conduction 148
10.1.1 The basic law of thermal conductivity 148
10.1.2 Thermal conductivity 151
10.1.3 Mathematical description of thermal conduction problems 153
10.2 Steady-state heat conduction 156
10.2.1 Steady heat conduction of plane wall 156
10.2.2 Steady-state heat conduction of the cylinder wall 158
10.3 Summary 160
Exercises 160
Answers 162
Chapter 11 Convection heat transfer 164
11.1 Convective heat transfer 164
11.2 Newton’s cooling law 165
11.3 Influence factors on convective heat transfer 167
11.3.1 Cause of flow 167
11.3.2 Flow state 168
11.3.3 Whether the fluid has a phase change 168
11.3.4 Physical properties of fluid 169
11.3.5 Geometrical factors of heat transfer surface 169
11.4 Summary 170
Exercises 170
Answers 172
Chapter 12 Radiative heat transfer 173
12.1 Basic concepts of thermal radiation 173
12.1.1 Absorption 173
12.1.2 Reflection 175
12.1.3 Gray body and blackbody 175
12.1.4 Radiation intensity 176
12.1.5 Emissive power 177
12.2 The basic law of blackbody radiation 178
12.2.1 Planck’s law 178
12.2.2 Wien’s displacement law 179
12.2.3 Stefan-Boltzmann’s law 179
12.2.4 Lambert’s law 180
12.3 Emission characteristics of actual objects 180
12.3.1 Thermal radiation of actual objects 180
12.3.2 G. R. KirchhofTs law 181
12.4 Atmospheric greenhouse effect and greenhouse effect 182
Exercises 184
Answers 185
Chapter 13 Heat transfer process and heat exchanger 186
13.1 Heat transfer process 186
13.1.1 Heat transfer through a flat wall 186
13.1.2 Heat transfer through the wall of tube 187
13.1.3 Heat transfer process through fin wall 188
13.1.4 Combined heat transfer 190
13.2 Heat exchanger 190
13.2.1 Classification of heat exchangers 191
13.2.2 Heat transfer calculation of heat exchangers 195
13.3 Enhancing and weakening of heat transfer 198
13.4 Summary 200
Exercises 200
Answers 201
Appendix 202
References 215