本書從城鎮(zhèn)污水含有大量的可回收資源和能源出發(fā),詳細介紹了城鎮(zhèn)污水中碳、磷和再生水的回收理論和基本方法,總結了常見的污水資源化工藝與技術,同時介紹了城鎮(zhèn)污泥資源化的可能途徑和技術手段;詳細闡明了污水低碳處理的基本概念和發(fā)展趨勢,介紹了污水處理廠低碳技術的原理和工藝設計;同時從廠區(qū)設計、技術手段、資源回收、低碳減排等方面詳細介紹了污水資源化的實際典型案例,為城鎮(zhèn)污水低碳運行和資源化回收利用提供理論和技術支持。
本書從降低城鎮(zhèn)污水廠能源消耗和提高污水中化學能、熱能和營養(yǎng)物質等回收利用兩方面,詳細分析現(xiàn)今污水處理過程中節(jié)能減排、資源化回收的有效途徑和技術手段,從城鎮(zhèn)污水資源化和低碳運行的概念、原理、技術方法、工藝設計等方面展開詳細介紹
李大鵬,男,48歲,蘇州科技大學省協(xié)同創(chuàng)新中心管委會辦公室主任教授,高等教育給排水科學與工程專業(yè)評估委員會委員,專業(yè)方向:農村生活污水處理,地表水修復訪問學者1年,為國際留學生全英文授課4年。主持完成國家自然科學基金3項,主持完成省部級項目3項,參與完成國家自然科學基金重點項目1項和十一五水重大專項1項;目前主持國家自然科學基金1項、十三五水重大專項子課題2項、省高校重大項目1項。參編《湖泊沉積物界面過程與效應》,2013年,科學出版社,獨立撰寫第10章,4萬字。迄今,公開發(fā)表文章102篇,其中SCI6篇(1區(qū)1篇,2區(qū)3篇),EI15篇,CSCD收錄31篇。
Chapter 1 Overview of wastewater ( 1 ) 1.1 Sources and characteristics of municipal wastewater ( 1 ) 1.1.1 Types and sources of municipal wastewater ( 1 ) 1.1.2 Properties and quality indexes of municipal wastewater ( 4 ) 1.1.3 Typical characteristics of municipal wastewater ( 9 ) 1.2 Significance of wastewater reuse and resource recovery ( 11 ) 1.2.1 The purpose and significance of wastewater reuse ( 11 ) 1.2.2 The significance of energy recovery from wastewater ( 12 ) 1.3 Resource and energy in municipal wastewater ( 13 ) 1.3.1 Resource types and resource feasibility ( 13 ) 1.3.2 Energy reserves and energy feasibility ( 14 ) 1.4 Low carbon technologies for municipal wastewater ( 15 ) 1.4.1 Concept of low carbon technologies ( 15 ) 1.4.2 Evaluation on low carbon technologies ( 15 )Chapter 2 Mechanism of municipal wastewater resource ( 18 ) 2.1 Phosphorus resource ( 18 ) 2.1.1 Significance of phosphorus resource ( 18 ) 2.1.2 Basic methods for phosphorus resource ( 18 ) 2.1.3 Evaluation on phosphorus resource ( 21 ) 2.2 Carbon recovery theory ( 21 ) 2.2.1 Significance of carbon recovery ( 21 ) 2.2.2 Feasibility of carbon recovery ( 22 ) 2.2.3 Basic methods of carbon recovery ( 23 ) 2.3 Mechanism of reclaimed water utilization ( 26 ) 2.3.1 Significance of water reuse ( 26 ) 2.3.2 Feasibility of water reuse ( 27 ) 2.3.3 Basic methods for water reuse ( 28 ) 2.4 Risk analysis and management of wastewater resource ( 31 ) 2.4.1 Risks in agriculture? forestry? stock raising? fishery ( 31 ) 2.4.2 Risks in urban utilization u56256 .? ( 32 )2.4.3 Risks in industrial water ( 33 )Chapter 3 Processes and technologies for wastewater resource ( 36 ) 3.1 Processes and designment for phosphorus resource ( 36 ) 3.1.1 Mechanism of biological method for phosphorus removal ( 36 ) 3.1.2 Mechanism of chemical method for phosphorus removal ( 38 ) 3.1.3 Designment and utilization of phosphorus resource ( 39 ) 3.2 Carbon recovery process and design ( 42 ) 3.2.1 Biological principles and processes of carbon recovery ( 43 ) 3.2.2 Chemical principles and processes of carbon recovery ( 45 ) 3.2.3 Design and engineering applications of carbon recovery ( 49 ) 3.3 The preparation process and application of reclaimed water ( 64 ) 3.3.1 Principle and advanced treatment for reclaimed water ( 64 ) 3.3.2 Reclaimed water design and engineered applications ( 69 ) 3.3.3 Safety assessment technology of reclaimed water ( 77 )Chapter 4 Low carbon technologies of wastewater ( 82 ) 4.1 Anaerobic technologies of wastewater ( 82 ) 4.1.1 Mechanisms of anaerobic technologies ( 82 ) 4.1.2 Anaerobic technologies ( 84 ) 4.1.3 Designment and utilization of anaerobic technologies ( 85 ) 4.2 Anaerobic-aerobic process (AP / O) ( 89 ) 4.3 Anaerobic-anoxic- aerobic process (A/ A/ O) ( 90 ) 4.3.1 The basic process ( 91 ) 4.3.2 The influence of environment conditions on the A/ A/ O ( 91 ) 4.3.3 The problems of the A/ A/ O process and the modification ( 93 ) 4.3.4 The designment of the A/ A/ O process ( 93 ) 4.4 Denitrifying phosphorus removal ( 94 ) 4.4.1 Definition of denitrifying phosphorus removal ( 94 ) 4.4.2 Denitrifying phosphorus removing bacteria ( 94 ) 4.4.3 Principle of denitrifying phosphorus removal ( 96 ) 4.4.4 Processes of denitrifying phosphorus removal ( 96 ) 4.4.5 Types of denitrifying phosphorus removal processes ( 96 ) 4.4.6 Factors influencing denitrifying phosphorus removal ( 99 ) 4.5 Energy resource and utilization (102) 4.5.1 Biogas production by anaerobic digestion (103) 4.5.2 Volatile short-chain fatty acid production by fermentation (104) 4.5.3 Generation electricity by sludge incineration (106) 4.5.4 Hydrogen production (107) 4.5.5 Biochar production (109) 4.5.6 Biodegradable plastic production (110) 4.5.7 Fertilizer production (111)4.5.8 Other resource technologies (113 ) 4.5.9 Designment of sludge resource (114) 4.6 Optimized operation of wastewater treatment plant (127) 4.6.1 Strategies for improving energy efficiency of WWTPs (127) 4.6.2 Optimized operation and management of WWTPs (130) 4.7 Low-carbon operation strategy (134) 4.7.1 Low-carbon technology orientation (134) 4.7.2 Evaluation of low-carbon technologies (139)Chapter 5 Control and Resource on sludge (146) 5.1 Overview (146) 5.1.1 The principle for the sludge treatment (147) 5.1.2 The basic method for sludge treatment (147) 5.1.3 The basic process for sludge treatment (148) 5.2 Kinds? characteristics? and calculations (148) 5.2.1 Component and kinds of the sludge (148) 5.2.2 Indexes of the sludge (149) 5.2.3 Calculation of sludge volume (151) 5.3 Sludge thickening (152) 5.3.1 The gravity thickening (152) 5.3.2 The flotation thickening (153) 5.4 Sludge digestion (154) 5.4.1 Anaerobic digestion (154) 5.4.2 Aerobic digestion (154) 5.5 Sludge conditioning (155) 5.5.1 Chemical conditioning (155) 5.5.2 Heat conditioning (155) 5.5.3 Elutriation conditioning (156) 5.5.4 Freezing solution conditioning (156) 5.6 Sludge dewatering (156) 5.6.1 The natural drying of sludge (156) 5.6.2 The mechanical dewatering of sludge (157) 5.7 Sludge drying and incineration u56256 .? (159) 5.8 Comprehensive utilization and ultimate disposal of the sludge (159) 5.8.1 Agricultural fertilizer (159) 5.8.2 Building materials (160) 5.8.3 Landfill (160) 5.8.4 Land use (160) 5.8.5 Compost (161)5.8.6 Thermolysis (161)Chapter 6 Reclaimed water preparation and applications (164 ) 6.1 Overview of reclaimed water (164) 6.2 Standard for reclaimed water quality (166) 6.3 Treatment processes for reclaimed water (168) 6.3.1 Removal of pathogenic microorganisms by wastewater regeneration (169) 6.3.2 Removal of chemical pollutants by wastewater regeneration (171) 6.4 Disinfection and risk assessment of reclaimed water (173) 6.5 Technology for safety guarantee of reclaimed water (180) 6.6 Potential risks of reclaimed water utilization (183) 6.6.1 Potential risks of reclaimed water used in agriculture? forestry? animal husbandry andfishery (183) 6.6.2 Potential risks of miscellaneous urban use of reclaimed water (185) 6.6.3 Potential risks of industrial reuse of reclaimed water (187) 6.6.4 Potential risks of groundwater recharge by reclaimed water u56256 .? (188)Chapter 7 Typical cases of wastewater recycling (192) 7.1 The Chengdong reclaimed water plant in Jiaxing (192) 7.1.1 Project background (192) 7.1.2 Design of reclaimed water plant (194) 7.1.3 Technology of reclaimed water plant (198) 7.1.4 Process of reclaimed water plant (201) 7.2 Huaifang reclaimed water plant in Beijing (210) 7.2.1 Project background (210) 7.2.2 Design of reclaimed water plant (212) 7.2.3 Technology of reclaimed water plant (214) 7.2.4 Process of reclaimed water plant (214) 7.3 Sheboygan reclaimed water plant in Wisconsin (219) 7.3.1 Project background (219) 7.3.2 Design of reclaimed water plant (220) 7.3.3 Technology of reclaimed water plant (221) 7.3.4 Process of reclaimed water plant (225)