定 價(jià):88 元
叢書名:國(guó)外優(yōu)秀數(shù)學(xué)著作原版系列
- 作者:[俄羅斯]瓦西里.曼圖洛夫著
- 出版時(shí)間:2023/1/1
- ISBN:9787576706208
- 出 版 社:哈爾濱工業(yè)大學(xué)出版社
- 中圖法分類:O189.24
- 頁(yè)碼:578
- 紙張:
- 版次:1
- 開本:16開
紐結(jié)理論是數(shù)學(xué)學(xué)科代數(shù)拓?fù)涞囊粋(gè)分支,按照數(shù)學(xué)上的術(shù)語(yǔ)來(lái)說,是研究如何把若干個(gè)圓環(huán)嵌入到三維實(shí)歐氏空間中去的數(shù)學(xué)分支。
紐結(jié)理論在現(xiàn)代數(shù)學(xué)中發(fā)揮了很大的作用,人們已經(jīng)在過去的20年中得到了有關(guān)這個(gè)理論的最有意義的結(jié)果。
本書的目的是描述現(xiàn)代紐結(jié)理論的主要概念,以及對(duì)初學(xué)者和專業(yè)學(xué)者來(lái)說都很有用的完整的證明。本書的大部分內(nèi)容來(lái)自作者對(duì)虛紐結(jié)理論的研究結(jié)果。
瓦西里·曼圖洛夫,俄羅斯數(shù)學(xué)家,鮑曼莫斯科國(guó)立技術(shù)大學(xué)幾何與拓?fù)鋵W(xué)教授。
Preface
Preface to the second edition
Ⅰ Knots, links, and invariant polynomials
1 Introduction
1.1 Basic definitions
Reidemeister moves. Knot arithmetics
2.1 Polygonal links and Reidemeister moves
2.2 Independence of Reidemeister moves
2.3 Knot arithmetics and Seifert surfaces
3 Links in 2-surfaces in R3. Simplest link invariants
3.1 Knots in 2-surfaces. The classification of torus knots
3.2 The linking coefficient
3.3 The Arf invariant
3.4 The colouring invariant
4 Fundamental group. The knot group
4.1 Digression. Examples of unknotting
4.2 Pundamental group. Basic definitions and examples
4.3 Calculating knot groups
5 The knot quandle and the Conway algebra
5.1 Introduction
5.2 Geometric and algebraic definitions of the knot quandle .
5.2.1 Geometric description of the quandle
5.2.2 Algebraic description of the quandle
5.3 Completeness of the quandle
5.4 Special realisations of the quandle: eolouring invariant, fundamental group, Alexander polynomial
5.5 The Conway algebra and polynomial invariants
5.6 Realisations of the Conway algebra. The Conway-Alexander,Jones, HOMFLY-PT and Kauffman polynomials
5.7 More on Alexander's polynomial. Matrix representation
6 Kauffman's approach to Jones polynomial
6.1 State models in physics and Kauffman's bracket
6.2 Kauffman's forIn of Jones polynomial and skein relations
6.3 Kauffman's two-variable polynomial
7 Properties of Jones polynomials. Khovanov's complex
7.1 Simplest properties
7.2 Tait's first conjecture and Kauffman-Murasugi's theorem
7.3 Menasco-Thistletwaite theorem and the classification of alterhating links
7.4 The third Tait conjecture
7.5 A knot table
7.6 Khovanov's categorification of the Jones polynomial
7.6.1 The two phenomenological conjectures
7.6.2 Spanning tree for Khovanov complex
7.6.3 The Khovanov polynomial and Frobenius extensions
7.6.4 Minimal diagrams of links
8 Lee-Rasmussen invariant, slice knots, and the genus conjecture
8.1 Khovanov homology and Lee homology
8.1.1 Lee's homology
8.1.2 Calculation of Kh'
8.2 The Rasmussen invariant: Definition and basic properties of the invariant
8.2.1 The invariant s
8.2.2 Properties of s
8.3 Behaviour under cobordisms
8.3.1 Elementary cobordisms
8.3.2 Induced maps
8.3.3 Canonical generators
8.3.4 The slice genus
8.4 Computations and relations with other invariants
8.4.1 Using Kh
8.4.2 Positive knots
8.5 R eideIneister moves
Ⅱ Theory of braids
9 Braids, links and representations of braid groups
9.1 Four definitions of the braid group
9.1.1 Geometrical definition
9.1.2 Topological definition
9.1.3 Algebro-geometrical definition
9.1.4 Algebraic definition
9.1.5 Equivalence of the four definitions
……
Ⅲ Vassiliev's invariants.Atoms and d-diagrams
Ⅳ Virtual knots
V Knots, 3-manifolds, and Legendrian knots
D Unsolved problems in knot theory
Bibliography
Index
編輯手記