關(guān)于我們
書(shū)單推薦
新書(shū)推薦
|
|
物理化學(xué)(Physical Chemistry)(景蘇)
《物理化學(xué)(英文版)Physical Chemistry》為十三五江蘇省高等學(xué)校本科重點(diǎn)教材(新編)。本書(shū)是在繼承既有物理化學(xué)中文、英文教材體系成果的基礎(chǔ)上編寫(xiě)而成的,在新工科理念指導(dǎo)下,注重借助數(shù)學(xué)、物理等基礎(chǔ)科學(xué)的理論原理及新實(shí)驗(yàn)技術(shù)手段研究化學(xué)變化中的基本規(guī)律。本書(shū)共包括九章內(nèi)容,分別是氣體的性質(zhì)、熱力學(xué)定律、熱力學(xué)第二定律、多組分系統(tǒng)熱力學(xué)、化學(xué)平衡、相平衡、電化學(xué)平衡、化學(xué)動(dòng)力學(xué)和界面化學(xué),每章均配有與章節(jié)基本概念、公式和知識(shí)內(nèi)容相對(duì)應(yīng)的不同難度的例題、練習(xí)題和思考題,有助于鞏固掌握基礎(chǔ)知識(shí),增強(qiáng)解題及邏輯思維能力。
本書(shū)注重提高學(xué)生的學(xué)習(xí)興趣和效果,培養(yǎng)多學(xué)科基礎(chǔ)厚實(shí)、工程能力強(qiáng)、綜合素質(zhì)高且能實(shí)現(xiàn)跨界整合的復(fù)合型人才。本書(shū)既可作為高等院校化工類、化學(xué)類、材料類、生工制藥類、環(huán)境類等專業(yè)基礎(chǔ)物理化學(xué)課程的全英文教學(xué)用書(shū),也可供其他相關(guān)專業(yè)使用,并可作為相關(guān)科研和工程技術(shù)人員的參考用書(shū)。
前言
本書(shū)是為本科物理化學(xué)課程英文教學(xué)而設(shè)計(jì)編寫(xiě)的。物理化學(xué)是化學(xué)的理論基礎(chǔ),使用物理的原理和方法來(lái)研究化學(xué)中基本的規(guī)律和理論,為學(xué)生開(kāi)啟了將化學(xué)的描述性、理論性和數(shù)學(xué)知識(shí)進(jìn)行融匯貫通之路。因此本書(shū)內(nèi)容著眼于通過(guò)定義體系,研究其狀態(tài),并分析其狀態(tài)改變的過(guò)程。
本書(shū)分九章,首先以熱力學(xué)的三個(gè)基本定律為基礎(chǔ),研究宏觀化學(xué)體系在氣態(tài)、液態(tài)、固態(tài)、溶解態(tài)等平衡態(tài)的物理化學(xué)性質(zhì)及其規(guī)律性;然后研究由于化學(xué)或物理因素的擾動(dòng)而引起的體系的化學(xué)變化過(guò)程速率和變化機(jī)理。每一章都包含例題和習(xí)題,以便讀者理解并運(yùn)用相關(guān)知識(shí)點(diǎn)。
本書(shū)由景蘇、王強(qiáng)任主編,各章執(zhí)筆人分別是裴文博(章),美國(guó)得克薩斯南方大學(xué)Jacob Xin Wei 和Yuanjian Deng、景蘇(第二章),姚敏霞(第三章),王芳(第四章),林志華(第五章),王強(qiáng)(第六章),韓明娟和吳雅靜(第七章),王小輝(第八章),李冀蜀(第九章)。全書(shū)承蒙黃嶺教授和美國(guó)得克薩斯南方大學(xué)Jacob Xin Wei 教授詳細(xì)審閱并提出寶貴的修改意見(jiàn)。
由于編者水平有限,書(shū)中疏漏及不當(dāng)之處在所難免,懇請(qǐng)讀者提出寶貴意見(jiàn)。
編者
2021年1月
Preface
This is a textbook designed for an undergraduate physical chemistry course. Physical chemistry is one of the traditional sub-disciplines of chemistry and is concerned with the application of the concepts and theories of physics to the analysis of the chemical properties and reactive behavior of matter. The physical chemistry course is often the first opportunity that a student has to synthesize descriptive, theoretical, and mathematical knowledge about chemistry into a coherent whole. To facilitate this synthesis, the book is constructed about the idea of defining a system, studying the states in which it might be found, and analyzing the processes by which it can change its state.
The book is divided into nine chapters. Based on the three basic laws of thermodynamics, it firstly focuses on the study the macroscopic properties of gases, liquids, solids and solutions; the following dynamics includes chemical change caused by the disturbance of chemical or physical factors. Each chapter contains examples that illustrate various kinds of calculations, as well as exercises placed within the chapter. Both these exercises and the problems at the end of each section are designed to provide practice in applying techniques and insights obtained through study of the chapter.
This book is edited by Jing Su and Wang Qiang. The authors of each chapter are Pei Wenbo (Chapter 1), Jacob Xin Wei and Yuanjian Deng of Texas Southern University, Jing Su (Chapter 2), Yao Minxia (Chapter 3), Wang Fang (Chapter 4), Lin Zhihua (Chapter 5), Wang Qiang (Chapter 6), Han Mingjuan and Wu Yajing (Chapter 7), and Wang Xiaohui (Chapter 8), Li Jishu (Chapter 9). Professor Huang Ling and Professor Jacob Xin Wei of Southern University of Texas reviewed the manuscript and put forward valuable suggestions for revision.
The authors encourage students and instructors to comment on any part of the book; please send comments and suggestions to the authors attention.
Chapter 1 The Properties of Gases 1
1.1 State Equation of the Ideal Gas 1
1.1.1 Empirical Laws of Gases 1
1.1.2 State Equation of Ideal Gas 2
1.1.3 Model and Definition of Ideal Gas 4
1.2 The Properties of Mixtures of the Ideal Gases 5
1.2.1 Composition of Mixtures 5
1.2.2 Daltons Law of Partial Pressures 6
1.2.3 Amagats Law of Partial Volumes 7
1.3 State Equations of Real Gas 8
1.3.1 The van der Waals Equation 8
1.3.2 Generalized Equation of State for Real Gases 9
1.4 Isothermal Curves and Liquefaction of Real Gas 10
1.4.1 Saturated Vapor Pressure of the Liquid 10
1.4.2 Isothermal Curves and Liquefaction 12
1.4.3 Critical Parameters and Critical Compression Factor Zc 14
1.5 Exercises 15
Chapter 2 The First Law of Thermodynamics 17
2.1 Basic Concepts 17
2.1.1 System and Surroundings 17
2.1.2 Property, State, and State Function 18
2.1.3 Process and Route 19
2.1.4 Work, Heat, and Energy 20
2.2 The First Law of Thermodynamics 22
2.2.1 The First Law of Thermodynamics 22
2.2.2 Internal Energy 23
2.3 Heat, Enthalpy, and Heat Capacities 23
2.3.1 Heat in Isochoric Conditions, and Internal Energy 23
2.3.2 Heat in Isobaric Conditions, and Enthalpy 25
2.3.3 Hesss Law 26
2.3.4 Heat Capacities 27
2.4 Pressure-Volume Work and Reversible Processes 29
2.4.1 Pressure-Volume Work 29
2.4.2 Reversible Processes 30
2.5 Isoenthalpic Processes 36
2.5.1 The Joule-Thomson Effect 36
2.5.2 Adiabatic Joule-Thomson Coefficient 37
2.6 Thermochemistry 37
2.6.1 Standard Enthalpy of Formation 38
2.6.2 Enthalpy of Reaction 39
2.6.3 Temperature-Dependence of Standard Enthalpy of Reaction 40
2.7 Exercises 41
Chapter 3 The Second Law of Thermodynamics 42
3.1 Statements of the Second Law of Thermodynamics 42
3.1.1 Spontaneous Process 42
3.1.2 Conversion of Heat and Work 43
3.1.3 Statements of the Second Law of Thermodynamics 43
3.2 Carnot Cycle and Carnot Theorem 44
3.2.1 Carnot Cycle 44
3.2.2 Carnot Theorem 45
3.3 Entropy and Clausius Inequality 46
3.3.1 Derivation and Definition of Entropy 46
3.3.2 The Clausius Inequality 47
3.3.3 The Principle of the Increase of Entropy 47
3.3.4 Physical Significance of Entropy 48
3.4 The Calculation of Entropy Changes 49
3.4.1 The Calculation of Entropy Changes in Simple pVT Process 49
3.4.2 The Calculation of Entropy Changes for Phase Changes 51
3.5 The Standard Molar Reaction Entropy Change of Chemical Reaction 52
3.5.1 The Third Law of Thermodynamics 52
3.5.2 Absolute Entropy and Standard Molar Entropy of Matter 52
3.5.3 Calculation of Entropy Changes for Chemical Reactions 53
3.6 The Gibbs and Helmholtz Functions 55
3.6.1 Helmholtz Function 55
3.6.2 Gibbs Function 56
3.7 The Calculation of A and G 57
3.7.1 Simple pVT Change Process 57
3.7.2 Phase Change Processes 57
3.7.3 Chemical Change Processes 58
3.8 The Fundamental Equation of Thermodynamics 59
3.8.1 The Fundamental Equations of Thermodynamics 59
3.8.2 The Relations of Characteristic Function 60
3.8.3 The Maxwell Relations 61
3.9 The Application of the Second Law of Thermodynamics in the Phase Equilibria of Single Component Systems 62
3.9.1 The Clapeyron Equation 62
3.9.2 The Clausius-Clapeyron Equation 63
3.9.3 The Effect of Total Pressure on the Vapor Pressure 64
3.10 Exercises 65
Chapter 4 The Thermodynamics of Multi-Component Systems 68
4.1 Composition scale of multi-component systems 68
4.1.1 Mass Concentration 68
4.1.2 Amount of Substance concentration 68
4.1.3 Molality 69
4.2 Partial Molar Quantities 69
4.2.1 Definition of Partial Molar Quantity 70
4.2.2 Collected Formula of Partial Molar Quantity 71
4.2.3 The Gibbs-Duhem Equation 71
4.3 Chemical Potential 72
4.3.1 Definition of Chemical Potential 72
4.3.2 Equilibrium Criterion of Material 73
4.3.3 Application of Chemical Potential in Phase Equilibrium 74
4.4 Chemical Potential of Gas 75
4.4.1 Chemical Potential of a Pure Ideal Gas 75
4.4.2 Chemical Potentials in an Ideal Gas Mixture 76
4.5 Raoults law and Henrys law 77
4.5.1 Raoults Law 77
4.5.2 Henrys Law 78
4.5.3 Comparison of Raoults Law and Henrys Law 79
4.6 Mixture of Ideal Liquid 79
4.6.1 Definition and Features of Mixture of Ideal Liquid 79
4.6.2 Chemical Potential of Arbitrary Component in Mixture of Ideal Liquid 80
4.6.3 Mixing Properties of Mixture of Ideal Liquid 81
4.7 Ideal Dilute Solution 82
4.7.1 Definition of Ideal Dilute Solution 82
4.7.2 Chemical Potential of the Solvent and Solute in Ideal Dilute Solution 82
4.8 Real Liquid Solution 83
4.8.1 The Solvent Activity 83
4.8.2 The Solute Activity 84
4.9 Colligative Properties 84
因字?jǐn)?shù)限制,僅展示部分目錄
|