fastai與PyTorch深度學(xué)習(xí)實(shí)踐指南(影印版)
定 價(jià):169 元
- 作者:JeremyHoward 著
- 出版時(shí)間:2021/4/1
- ISBN:9787564194543
- 出 版 社:東南大學(xué)出版社
- 中圖法分類:TP181
- 頁碼:594
- 紙張:
- 版次:1
- 開本:16開
深度學(xué)習(xí)往往被視為數(shù)學(xué)博士和大型科技公司的專屬領(lǐng)域。但正如這本實(shí)踐指南所展示的那樣,熟練使用Python的程序員只需很少的數(shù)學(xué)背景、少量的數(shù)據(jù)和最少的代碼,就可以在深度學(xué)習(xí)方面取得令人印象深刻的成果。怎么樣才能做到?使用fastai,這是**為最常用的深度學(xué)習(xí)應(yīng)用提供一致接口的庫。
本書作者Jeremy Howard和Sylvain Gugger是fastai的創(chuàng)建者,他們向你展示了如何使用fastai和PyTorch在各種任務(wù)上訓(xùn)練一個(gè)模型。你還將逐步深入了解深度學(xué)習(xí)理論,以便充分理解幕后的算法。
在計(jì)算機(jī)視覺、自然語言處理、表格型數(shù)據(jù)和協(xié)同過濾中訓(xùn)練模型;
學(xué)習(xí)在實(shí)踐中至關(guān)重要的**深度學(xué)習(xí)技術(shù);
通過了解深度學(xué)習(xí)模型的工作原理,提高準(zhǔn)確性、速度和可靠性;
了解如何將你的模型轉(zhuǎn)化為Web應(yīng)用;
從頭開始實(shí)現(xiàn)深度學(xué)習(xí)算法;
考慮你的工作所帶來的道德影響;
從PyTorch聯(lián)合創(chuàng)始人Soumith Chintala的前言中獲得啟示。
Preface
Foreword
Part I. Deep Learning in Practice
1. Your Deep Learning Journey
Deep Learning Is for Everyone
Neural Networks: A Brief History
Who We Are
How to Learn Deep Learning
Your Projects and Your Mindset
The Software: PyTorch, fastai, and Jupyter (And Why It Doesn't Matter)
Your First Model
Getting a GPU Deep Learning Server
Running Your First Notebook
What Is Machine Learning?
What Is a Neural Network?
A Bit of Deep Learning Jargon
Limitations Inherent to Machine Learning
How Our Image Recognizer Works
What Our Image Recognizer Learned
Image Recognizers Can Tackle Non-Image Tasks
Jargon Recap
Deep Learning Is Not Just for Image Classification
Validation Sets and Test Sets
Use Judgment in Defining Test Sets
A Choose Your Own Adventure Moment
Questionnaire
Further Research
2. From Model to Production
The Practice of Deep Learning
Starting Your Project
The State of Deep Learning
The Drivetrain Approach
Gathering Data
From Data to DataLoaders
Data Augmentation
Training Your Model, and Using It to Clean Your Data
Turning Your Model into an Online Application
Using the Model for Inference
Creating a Notebook App from the Model
Turning Your Notebook into a Real App
Deploying Your App
How to Avoid Disaster
Unforeseen Consequences and Feedback Loops
Get Writing!
Questionnaire
Further Research
3. Data Ethics
Key Examples for Data Ethics
Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits
Feedback Loops: YouTube's Recommendation System
Bias: Professor Latanya Sweeney \"Arrested\"
Why Does This Matter?
Integrating Machine Learning with Product Design
Topics in Data Ethics
Recourse and Accountability
Feedback Loops
Bias
Disinformation
Identifying and Addressing Ethical Issues
Analyze a Project You Are Working On
Processes to Implement
The Power of Diversity
……
Part II. Understanding fastai's applications
Part III. Foundations of Deep Learning
Part IV. Deep learning from Scratch
Index