支持向量機(Support Vector Machine,SVM)是建立在弗拉基米爾·萬普尼克(Vladimir Vapnik)提出的統(tǒng)計學習理論基礎上的一種使用廣泛的機器學習方法。這本簡明導論教程對支持向量機及其理論基礎進行了全面的介紹。書中從機器學習方法論講到超平面、核函數(shù)、泛化理論、優(yōu)化理論,最后總結到支持向量機理論,并介紹了其實現(xiàn)技術及應用。本書的敘述循序漸進,內容深入淺出,既嚴謹又易于理解。書中清晰的條理、富于邏輯性的推導以及優(yōu)美的文字,備受初學者和專家的贊許。本書可作為計算機、自動化、電子工程、應用數(shù)學等專業(yè)的高年級本科生或研究生教材,也可作為機器學習、人工智能、神經(jīng)網(wǎng)絡、數(shù)據(jù)挖掘等課程的參考教材,同時還是相關領域的教師和研究人員的參考書。
·這本經(jīng)典入門教材不僅引入了學習支持向量機所需的高等數(shù)學,更是幫助讀者從直覺上理解數(shù)學公式背后的原理。
·兩位英國科學家作者是國際上極富盛名的人工智能專家。
In the last few years there have been very significant developments in the theoretical understanding of Support Vector Machines (SVMs) as well as algorithmic strategies for implementing them, and applications of the approach to practical problems. We believe that the topic has reached the point at which it should perhaps be viewed as its own subfield of machine learning, a subfield which promises much in both theoretical insights and practical usefulness. Despite reaching this stage of development, we were aware that no organic integrated introduction to the subject had yet been attempted. Presenting a comprehensive introduction to SVMs requires the synthesis of a surprisingly wide range of material, including dual representations, feature spaces, learning theory, optimisation theory, and algorithmics. Though active research is still being pursued in all of these areas, there are stable foundations in each that together form the basis for the SVM concept. By building from those stable foundations, this book attempts a measured and accessible introduction to the subject of Support Vector Machines.
The book is intended for machine learning students and practitioners who want a gentle but rigorous introduction to this new class of learning systems. It is organised as a textbook that can be used either as a central text for a course on SVMs, or as an additional text in a neural networks, machine learning, or pattern recognition class. Despite its organisation as a textbook, we have kept the presentation self-contained to ensure that it is suitable for the interested scientific reader not necessarily working directly in machine learning or computer science. In this way the book should give readers from other scientific disciplines a practical introduction to Support Vector Machines enabling them to apply the approach to problems from their own domain. We have attempted to provide the reader with a route map through the rigorous derivation of the material. For this reason we have only included proofs or proof sketches where they are accessible and where we feel that they enhance the understanding of the main ideas. Readers who are interested in the detailed proofs of the quoted results are referred to the original articles.
內洛·克里斯蒂安尼尼(Nello Cristianini)目前是英國布里斯托爾大學計算機科學系的人工智能教授。他獲得過英國皇家學會沃爾夫森杰出研究成就獎和歐洲研究理事會高階研究基金獎。2014年他被湯森路透列入2002至2012十年間具影響力的科學家名單,2016年被AMiner列入機器學習領域具影響力的百位研究者名單。
約翰·肖·泰勒(John Shawe-Taylor)目前是英國倫敦大學學院聯(lián)合國教科文組織人工智能講席教授,并擔任計算機科學系系主任和計算統(tǒng)計和機器學習中心主任。他還協(xié)調組織了多個機器學習歐洲聯(lián)合研究項目,比如NeuroCOLT(“神經(jīng)計算學習”)項目和PASCAL(“模式分析、統(tǒng)計建模與計算學習”)項目。
內洛·克里斯蒂安尼尼(Nello Cristianini)目前是英國布里斯托爾大學計算機科學系的人工智能教授。他獲得過英國皇家學會沃爾夫森杰出研究成就獎和歐洲研究理事會高階研究基金獎。2014年他被湯森路透列入2002至2012十年間最具影響力的科學家名單,2016年被AMiner列入機器學習領域最具影響力的百位研究者名單。
約翰·肖·泰勒(John Shawe-Taylor)目前是英國倫敦大學學院聯(lián)合國教科文組織人工智能講席教授,并擔任計算機科學系系主任和計算統(tǒng)計和機器學習中心主任。他還協(xié)調組織了多個機器學習歐洲聯(lián)合研究項目,比如NeuroCOLT(“神經(jīng)計算學習”)項目和PASCAL(“模式分析、統(tǒng)計建模與計算學習”)項目。