新能源材料與器件導論=Introduction to New Energy Materials and Devices:英文
定 價:198 元
- 作者:吳宇平、朱玉松、(南非)特尼斯·范·雷 編著
- 出版時間:2020/10/1
- ISBN:9787122371843
- 出 版 社:化學工業(yè)出版社
- 中圖法分類:TK01
- 頁碼:321
- 紙張:
- 版次:01
- 開本:16開精
《Introduction to New Energy Materials and Devices》一書,全面系統(tǒng)地介紹太陽能、氫能、生物質能、核能、動力電池、儲能和燃料電池等研究的基礎知識和最新進展。以儲能和換能為順序,先系統(tǒng)介紹了目前電化學儲能系統(tǒng),如鋰離子電池、其他新型電池和超級電容器的工作機理、發(fā)展歷史和最新進展;接著介紹了常見的換能系統(tǒng)如燃料電池、太陽能電池、太陽能制氫的研究現(xiàn)狀和未來趨勢;最后簡單介紹了生物質能、核能和其他新能源的發(fā)展展望。本書深入淺出,每一章均從基礎知識講起,內容涉及材料、物理、化學、電子、機械等多學科,知識體系涉及固體物理、電化學、材料科學與基礎、半導體物理與器件、薄膜技術與材料等。接著從基礎講到應用,探討對應儲能換能器件的組裝、存在的問題和發(fā)展方向。該書既避免枯燥的機理介紹,又能使讀者在對儲能換能器件的深入了解中加深對機理的了解。
本書采用全英文編寫,不僅適合于高等院校與新能源領域相關的本科生、研究生的雙語教材或參考書,也適合于相關的科研與管理工作者入門參考之一。
吳宇平,南京工業(yè)大學能源科學與工程學院院長,教授,博導。國家自然科學基金“杰出青年基金”獲得者(2015),第十三批中組部“國家千人計劃” 創(chuàng)業(yè)人才項目入選者(2016),江蘇省“雙創(chuàng)計劃”人才(2017),連續(xù)三年(2015-2017)入選全球高被引學者名單,入選全球具影響力的科研菁英名單(2015)。主要研究方向為新型儲能體系及其關鍵材料的研究和開發(fā)。目前主持完成國家自然科學基金項目4項、科技部國際合作項目1項,參加完成國家科技部“973”項目1項。目前主持國家杰出青年基金1項、國家自然科學基金委-廣東省聯(lián)合重點項目1項,并參與了國家重點研發(fā)計劃“基于材料基因組技術的全固態(tài)鋰電池及其關鍵材料研發(fā)”項目。已在國際專業(yè)學術期刊如Chem. Soc. Rev., Angew. Chem. Int. Ed.、Prog. Mater. Sci.、Energy Environ. Sci.、Adv. Mater.、Adv. Energy Mater.、Nano Lett.發(fā)表學術論文300余篇,37篇被列入ESI本領域高引用文章,被SCI核心期刊引用超過1萬余次,H-指數(shù)58;授權發(fā)明專利35項;編寫了有關能源儲存系統(tǒng)與材料的中英文著作6部,全球銷量超過5萬冊;多次受邀到國外訪問和/或作邀請報告和演講;多次參加美國、澳大利亞、韓國、南非等國家的博士論文和科研項目進行評審;并兼任多個國際會議的國際顧問。
Chapter 1 Introduction 001
1.1 Brief introduction to world energy consumption 001
1.2 History of various new energy materials and devices 006
1.2.1 Batteries 006
1.2.2 Supercapacitors 008
1.2.3 Fuel cells 009
1.2.4 Solar cells 010
1.2.5 Biomass energy 012
1.2.6 Nuclear energy 012
1.3 Principles of various new energy materials and devices 013
1.3.1 Principles of metal-ion secondary batteries 013
1.3.2 Principles of other secondary batteries 014
1.3.3 Principles of fuel cells 015
1.3.4 Principles of supercapacitors 017
1.3.5 Principles of solar cells 017
1.3.6 Principles of solar-to-hydrogen 018
1.3.7 Principles of biomass energy 019
1.3.8 Principles of nuclear energy 019
1.4 Some requirements for various new energy materials and devices 020
1.4.1 Requirements for lithium secondary batteries 020
1.4.2 Requirements of other secondary batteries 020
1.4.3 Requirements of fuel cells 022
1.4.4 Requirements of supercapacitors 023
1.4.5 Requirements of solar cells 023
1.4.6 Requirements of solar-to-hydrogen conversion 023
1.4.7 Requirements of biomass energy 024
1.4.8 Requirements of nuclear energy 024
1.5 About this book 024
References 025
Chapter 2 Lithium secondary batteries 028
2.1 Positive electrode materials for LIBs 029
2.1.1 LiCoO2-based positive electrode materials 030
2.1.2 LiNiO2-based positive electrode materials 031
2.1.3 LiMn2O4-based positive electrode materials 032
2.1.4 LiFePO4-based positive electrode materials 034
2.1.5 LiNi1-x-yCoxMnyO2 (NCM) positive electrode materials 034
2.2 Negative electrode materials for LIBs 036
2.2.1 Graphite 036
2.2.2 Si-based materials 038
2.2.3 Titanium oxides 038
2.3 Electrolytes for LIBs 039
2.3.1 Liquid electrolytes 040
2.3.2 Solid electrolytes 043
2.4 Separators for LIBs 045
2.4.1 The functions and characteristics of the separator 045
2.4.2 Separator types 046
2.4.3 Separator preparation methods 047
2.5 Aqueous rechargeable lithium batteries 049
2.5.1 First generation aqueous rechargeable lithium batteries 050
2.5.2 Second generation aqueous rechargeable lithium batteries 051
2.5.3 Third generation aqueous rechargeable lithium batteries 052
2.5.4 Side-reactions with H2O and O2 in an electrolyte 053
2.5.5 Water-in-salt aqueous rechargeable lithium batteries 054
2.6 Li-sulfur batteries 054
2.6.1 Principles of Li-sulfur batteries 055
2.6.2 Sulfur positive electrodes 056
2.6.3 Electrolytes for Li-sulfur batteries 056
2.7 Li-air batteries 057
2.7.1 Water-based lithium-air batteries 059
2.7.2 Organic lithium-air batteries 059
2.7.3 Water-organic two-liquid system lithium-air batteries 059
2.7.4 Solid-state lithium-air batteries 060
2.7.5 Ionic liquid system lithium-air batteries 060
References 060
Chapter 3 Other secondary batteries 065
3.1 Redox flow batteries 065
3.1.1 Polysulfide bromide battery (PSB) 068
3.1.2 ZNBR battery 068
3.1.3 Vanadium redox flow battery (VFB) 069
3.2 Na-S battery 070
3.2.1 Principle of operation 070
3.2.2 The configuration of the NAS battery 072
3.2.3 NAS battery features 073
3.2.4 Composition and crystalline structure of b-alumina 074
3.2.5 Challenges of NAS batteries 075
3.3 Other metal-air batteries 075
References 079
Chapter 4 Fuel cells 082
4.1 Introduction 082
4.1.1 Some history 082
4.1.2 Ordinary fuel cells 083
4.1.3 Advantages and disadvantages of fuel cells 084
4.1.4 Types of fuel cells 087
4.2 Fuel cell thermodynamics 095
4.2.1 How a basic fuel cell works 095
4.2.2 Fuel cell performance 095
4.2.3 Fuel cell internal energy 097
4.2.4 First law of thermodynamics 097
4.2.5 The second law of thermodynamics 098
4.2.6 What are thermodynamic potential and enthalpy 098
4.2.7 The calculation of reaction enthalpy 100
4.2.8 The Gibbs free energy 100
4.2.9 Factors influencing reversible voltage and calculation 101
4.2.10 Ideal fuel cell efficiency and actual fuel cell efficiency 103
4.3 Fuel cell reaction kinetics 104
4.3.1 Current basic physical quantity calculation 104
4.3.2 Calculation of reaction rate 105
4.3.3 Tiffier equation 105
4.3.4 Responsive charge transfer 106
4.3.5 Charge transfer can cause voltage loss 107
4.3.6 The physical significance of conductivity 108
4.4 Fuel cell systems 108
4.4.1 General description of fuel cell systems 108
4.4.2 Fuel cell stack 109
4.4.3 Fuel transfer processing subsystem 110
4.4.4 Power transmission subsystem 111
4.4.5 Fuel cell design levels: the unit cell, the stack, and the system 112
4.5 Fuel cell based power systems 115
4.5.1 Hybrid fuel cell power system 115
4.5.2 Standalone fuel cell power system 116
4.5.3 Grid connected fuel cell power systems 116
4.6 Applications of fuel cells 117
4.6.1 Fuel cell vehicles 117
4.6.2 Telecommunications 118
4.6.3 Underwater vehicles 118
4.6.4 Future targets 118
4.7 Conclusion 119
References 119
Chapter 5 Supercapacitors 123
5.1 Introduction 123
5.2 Charge storage mechanism of supercapacitors 124
5.2.1 Electrochemical double-layer capacitors 124
5.2.2 Pseudocapacitors 127
5.2.3 Hybrid capacitor devices 128
5.3 Electrolytes 129
5.3.1 Aqueous electrolytes 131
5.3.2 Organic electrolytes 132
5.3.3 Ionic-liquid-based electrolytes 135
5.3.4 Solid- and quasi-solid-state electrolytes 135
5.4 Electrode materials for EDLCs 137
5.4.1 Carbon materials with different-scaled pores 137
5.4.2 Activated carbons (ACs) 138
5.4.3 Carbon nanotubes (CNTs) 139
5.4.4 Graphene-based electrode materials 140
5.4.5 Other carbon structures 142
5.5 Electrode materials for pseudocapacitors 143
5.5.1 Noble metal oxides 143
5.5.2 Transition metal oxides and hydroxides 145
5.5.3 Conducting polymers (CPs) 146
5.6 Hybrid capacitors 149
5.6.1 Acidic HCs 149
5.6.2 Alkaline HCs 149
5.6.3 Lithium-ion capacitors 150
5.6.4 Sodium-ion capacitors 151
5.7 Supercapacitor performance 153
5.8 Applications of supercapacitors 154
References 155
Chapter 6 Solar cells 159
6.1 Introduction 159
6.1.1 History 160
6.1.2 Classification of solar cells 162
6.1.3 Some PV parameters 163
6.1.4 Principles of solar cells 169
6.2 Silicon-based solar cells 176
6.2.1 Introduction to Si-based solar cells 176
6.2.2 Electrode materials 177
6.2.3 Basic processing and key materials 178
6.3 GaAs solar cells 181
6.3.1 History of the GaAs solar cell 181
6.3.2 Comparison with silicon-based solar cells 182
6.3.3 Other properties of GaAs materials 182
6.3.4 Performance of GaAs solar cells 183
6.4 Dye-sensitized solar cells 183
6.4.1 History of dye-sensitized solar cells 184
6.4.2 Principle of operation of a DSSC 185
6.4.3 Assembly of dye-sensitized solar cells 186
6.4.4 Main components of DSSCs 187
6.5 Organic /Polymer solar cells 187
6.5.1 History of the polymer solar cell 188
6.5.2 Principles of polymer solar cells 189
6.5.3 Advantages of polymer solar cells 189
6.5.4 Structure of a polymer solar cell 190
6.5.5 Key materials for polymer solar cells 190
6.5.6 Development of polymer solar cells 191
6.6 Perovskite solar cells 192
6.6.1 Perovskite solar cell history 192
6.6.2 Principles of perovskite solar cells 192
6.6.3 Key materials for perovskite solar cells 192
6.7 Solar power in China 193
References 193
Chapter 7 Solar-to-Hydrogen 199
7.1 Hydrogen energy 199
7.2 Hydrogen production from solar radiation 200
7.3 Direct solar thermal hydrogen generation 201
7.4 Concentrated solar thermochemical hydrogen production 203
7.4.1 Thermodynamics of solar thermochemical processes 203
7.4.2 Thermochemical processes 205
7.5 Solar photochemical hydrogen production 209
7.6 Photocatalytic hydrogen production 210
7.6.1 Principles of photocatalytic hydrogen generation 210
7.6.2 Key photocatalytic hydrogen generation processes 211
7.6.3 Evaluating photocatalytic water splitting systems 211
7.6.4 UV photocatalysts for water splitting 212
7.6.5 Visible light photocatalysts for H2 production 214
7.6.6 Main challenges and opportunities 222
7.7 Photobiological hydrogen generation 223
7.7.1 Biological hydrogen production processes 223
7.7.2 Microbiology 227
7.7.3 Key enzymes 227
7.7.4 Genetic modification of microorganisms 228
7.7.5 Theoretical considerations 228
7.7.6 Energy analysis and purification of hydrogen 229
7.8 Solar-hydrogen energy systems 230
References 231
Chapter 8 Biomass energy 234
8.1 Introduction of biomass energy 234
8.1.1 Definition and features 235
8.1.2 Main resource categories 235
8.1.3 Conversion technologies 236
8.1.4 The risks and rewards of energy from biomass 237
8.2 Biofuel characteristics 238
8.3 Bioethanol 239
8.3.1 Biomass resources 240
8.3.2 Detailed process technology 242
8.4 Biodiesel 247
8.4.1 Synthesis technology 248
8.4.2 Global biodiesel status 248
8.5 Gaseous biomass energy production 249
8.5.1 Biogas 249
8.5.2 Biomass gasification 251
8.6 Biomass power generation (BPG) 252
8.6.1 BPG in China 253
8.6.2 BPG in other countries 254
8.7 Outlook 255
References 256
Chapter 9 Nuclear energy 260
9.1 Introduction 260
9.2 What is nuclear energy 261
9.3 The physical basis of a nuclear reactor 263
9.3.1 The nucleus and nuclear energy 264
9.3.2 Radioactivity 265
9.3.3 Types and patterns of decay 265
9.3.4 Nuclear reactions 266
9.4 Nuclear electric power generation 266
9.5 Nuclear reactor types and raw materials 269
9.5.1 Nuclear reactor classification 269
9.5.2 Pressurized water reactor 270
9.5.3 Boiling water reactor 270
9.5.4 Heavy water reactor 271
9.5.5 Graphite reactor 271
9.6 Power generation principles 272
9.6.1 Advantages 274
9.6.2 Disadvantages 274
9.7 Nuclear resources 275
9.7.1 Marine nuclear resources 275
9.7.2 The nuclear resources of the moon 276
9.8 Nuclear safety 276
9.9 Nuclear energy development in China 278
References 281
Chapter 10 Other energy 285
10.1 Introduction 285
10.2 Wind energy 286
10.2.1 Development of wind energy 286
10.2.2 Utilization of wind energy 290
10.2.3 Wind turbines 292
10.2.4 The global wind energy situation 294
10.3 Geothermal energy 297
10.3.1 History of geothermal energy 298
10.3.2 Types of geothermal energy 299
10.3.3 Resources 300
10.3.4 Application scenarios of geothermal energy 301
10.3.5 Challenges of geothermal energy 302
10.4 Marine energy 303
10.4.1 Characteristics of marine energy 304
10.4.2 Forms of marine energy 305
10.4.3 Use patterns for electricity generation 306
10.4.4 Installed capacity of ocean energy 307
10.4.5 Challenges of ocean energy 308
10.4.6 Prospect forecast of ocean energy 309
10.5 Conclusion 310
References 310
Index 313