十五年前,本書(shū)的第一版成為學(xué)習(xí)隨機(jī)過(guò)程函數(shù)收斂的必備讀物,這部科學(xué)巨著終于出第2版了,仍然延續(xù)了第1版的風(fēng)格,但增加了不少新的知識(shí),在厚度上的增加了將近50面。第1版面世后,可預(yù)測(cè)的一致胎緊性有了很大的進(jìn)展,所以書(shū)中也做了全面的更新。本書(shū)仍然是學(xué)習(xí)隨機(jī)過(guò)程的一本不可或缺的參考書(shū)。目次:隨機(jī)過(guò)程一般概念;半鞅和獨(dú)立增量過(guò)程的特征;鞅問(wèn)題和測(cè)量改變;Hellinger過(guò)程、絕對(duì)連續(xù)和測(cè)度奇異性;絕對(duì)連續(xù)和奇異的可預(yù)測(cè)準(zhǔn)則;近鄰性、完全獨(dú)立和變分收斂;Skorokhod拓?fù)浜瓦^(guò)程收斂;具有獨(dú)立增量的過(guò)程收斂;具有獨(dú)立增量過(guò)程的收斂;半鞅的收斂;極限定理、密度過(guò)程和近鄰性。讀者對(duì)象:數(shù)學(xué)專業(yè)的研究生、老師和相關(guān)的科研人員。
Chapter I. The General Theory of Stochastic Processes,
Semi*rtingales and Stochastic Integrals
1. Stochastic Basis, Stopping Times, Optionala-Field,Martingales
1a. Stochastic Basis
lb. Stopping Times
lc. The Optional a-Field
ld. The Localiz*ion Procedure
1e. Martingales
1f. The Discrete Case
2. Predi*able a-Field, Predi*able Times
2a. The Predi*able a-Field
2b. Predi*able Times
2c. Totally Inaccessible Stopping Times
2d. Predi*able Pro*e*ion
2e. The Discrete Case
3. Increasing Processes
3a. Basic Properties
3b. Do, b-Meyer Deposition and Compens*o*of IncreasingProcesses
3c. Lenglart Domin*ion Property
3d. The Discrete Case
4. Semi*rtingales and Stochastic Integrals
4a. Locally Square-Integrable Martingales
4b. Depositions of a Local Martingale
4c. Semi*rtingales
4d. Constru*ion of the Stochastic Integral
4e. Quadr*ic Vari*ion ofa Semi*rtingale and Ito's For*la
4f. Dol6ans-Dade Exponential For*la
4g. The Discrete Case
Chapter II. Chara*eristics of Semi*rtingales and Processes withIndependent Increments
1. Random Measures
1a. General Random Measures
lb. Integer-Valued Random Measures
1c. A Fundamental Example: Poisson Measures
1d. Stochastic Integral with Respe* to a Random Measure
2. Chara*eristics of Semi*rtingales
2a. Definition of the Chara*eristics
2b. Integrability and Chara*eristics
2c. A Canonical Represent*ion for Semi*rtingales
2d. Chara*eristics and Exponential For*la
3. Some Examples
3a. The Discrete Case
3b. More on the Discrete Case
3c. The 'One-Point' Point Process and Empirical Processes
4. Semi*rtingales with Independent Increments
4a. Wiener Processes
4b. Poisson Processes and Poisson Random Measures
4c. Processes with Independent Increments andSemi*rtingales
4d. Gaussian Martingales
5. Processes with Independent Increments
Which Are Not Semi*rtingales
5a. The Results
5b. The Proofs
6. Processes with Conditionally Independent Increments
7. Progressive Conditional Continuous PIIs
8. Semi*rtingales, Stochastic Exponential and StochasticLogarit*.
8a. More About Stochastic Exponential and StochasticLogarit*.
8b. Multiplic*ive Depositions andExponentially Special Semi*rtingales
Chapter III. Martingale Problems and Changes of Measures
1. Martingale Problems and Point Processes
1a. General Martingale Problems
1b. Martingale Problems and Random Measures
1c. Point Processes and Multivari*e Point Processes