關(guān)于我們
書單推薦
新書推薦
|
離散時(shí)間信號(hào)處理(第三版)(英文版) 讀者對(duì)象:本書適合從事數(shù)字信號(hào)處理工作的科技人員,高等學(xué)校相關(guān)專業(yè)的高年級(jí)學(xué)生、研究生及教師使用。
本書系統(tǒng)論述了離散時(shí)間信號(hào)處理的基本理論和方法,是國際信號(hào)處理領(lǐng)域中的經(jīng)典教材。內(nèi)容包括離散時(shí)間信號(hào)與系統(tǒng),z 變換,連續(xù)時(shí)間信號(hào)采樣,線性時(shí)不變系統(tǒng)的變換分析,離散時(shí)間系統(tǒng)結(jié)構(gòu),濾波器設(shè)計(jì)方法,離散傅里葉變換,離散傅里葉變換的計(jì)算,利用離散傅里葉變換的信號(hào)傅里葉分析,參數(shù)信號(hào)建模,離散希爾伯特變換,倒譜分析與同態(tài)解卷積。本書例題和習(xí)題豐富,具有實(shí)用價(jià)值。本書的配套網(wǎng)站www.pearsonhighered.com/oppenheim提供了一些重要概念的可視化解釋以及利用這些概念進(jìn)行實(shí)踐的操作環(huán)境,以幫助對(duì)本書內(nèi)容進(jìn)行增強(qiáng)和補(bǔ)充。
Alan V. Oppenheim MIT電氣與計(jì)算機(jī)科學(xué)系Ford教授,MIT電子學(xué)研究實(shí)驗(yàn)室(RLE)首席研究員,美國國家工程院院士,IEEE會(huì)士,研究興趣為通用領(lǐng)域的信號(hào)處理及應(yīng)用,曾因出色的科研和教學(xué)工作多次獲獎(jiǎng)。其《信號(hào)與系統(tǒng)(第二版)》一直是行業(yè)內(nèi)首選的信號(hào)與系統(tǒng)課程教材,其“霸主”地位尚無可替代。
Alan V. Oppenheim美國麻省理工學(xué)院(MIT)電氣與計(jì)算機(jī)科學(xué)系Ford教授,MIT電子學(xué)研究實(shí)驗(yàn)室(RLE)首席研究員,美國國家工程院院士,IEEE會(huì)士,研究興趣為通用領(lǐng)域的信號(hào)處理及應(yīng)用,曾因出色的科研和教學(xué)工作多次獲獎(jiǎng)。另著有 Signals and Systems, Second Edition。
CONTENTS
1 Introduction 2 Discrete-Time Signals and Systems 2.0 Introduction 2.1 Discrete-Time Signals 2.2 Discrete-Time Systems 2.2.1 Memoryless Systems 2.2.2 Linear Systems 2.2.3 Time-Invariant Systems 2.2.4 Causality 2.2.5 Stability 2.3 LTI Systems 2.4 Properties of Linear Time-Invariant Systems 2.5 Linear Constant-Coefficient Difference Equations 2.6 Frequency-Domain Representation of Discrete-Time Signals and Systems 2.6.1 Eigenfunctions for Linear Time-Invariant Systems 2.6.2 Suddenly Applied Complex Exponential Inputs 2.7 Representation of Sequences by Fourier Transforms 2.8 Symmetry Properties of the Fourier Transform 2.9 Fourier Transform Theorems 2.9.1 Linearity of the Fourier Transform 2.9.2 Time Shifting and Frequency Shifting Theorem 2.9.3 Time Reversal Theorem 2.9.4 Differentiation in Frequency Theorem 2.9.5 Parseval’s Theorem 2.9.6 The Convolution Theorem 2.9.7 The Modulation or Windowing Theorem 2.10 Discrete-Time Random Signals 2.11 Summary Problems 3 The z-Transform 3.0 Introduction 3.1 z-Transform 3.2 Properties of the ROC for the z-Transform 3.3 The Inverse z-Transform 3.3.1 Inspection Method 3.3.2 Partial Fraction Expansion 3.3.3 Power Series Expansion 3.4 z-Transform Properties 3.4.1 Linearity 3.4.2 Time Shifting 3.4.3 Multiplication by an Exponential Sequence 3.4.4 Differentiation of X(z) 3.4.5 Conjugation of a Complex Sequence 3.4.6 Time Reversal 3.4.7 Convolution of Sequences 3.4.8 Summary of Some z-Transform Properties 3.5 z-Transforms and LTI Systems 3.6 The Unilateral z-Transform 3.7 Summary Problems 4 Sampling of Continuous-Time Signals 4.0 Introduction 4.1 Periodic Sampling 4.2 Frequency-Domain Representation of Sampling 4.3 Reconstruction of a Bandlimited Signal from Its Samples 4.4 Discrete-Time Processing of Continuous-Time Signals 4.4.1 Discrete-Time LTI Processing of Continuous-Time Signals 4.4.2 Impulse Invariance 4.5 Continuous-Time Processing of Discrete-Time Signals 4.6 Changing the Sampling Rate Using Discrete-Time Processing 4.6.1 Sampling Rate Reduction by an Integer Factor 4.6.2 Increasing the Sampling Rate by an Integer Factor 4.6.3 Simple and Practical Interpolation Filters 4.6.4 Changing the Sampling Rate by a Noninteger Factor 4.7 Multirate Signal Processing 4.7.1 Interchange of Filtering with Compressor/Expander 4.7.2 Multistage Decimation and Interpolation 4.7.3 Polyphase Decompositions 4.7.4 Polyphase Implementation of Decimation Filters 4.7.5 Polyphase Implementation of Interpolation Filters 4.7.6 Multirate Filter Banks 4.8 Digital Processing of Analog Signals 4.8.1 Prefiltering to Avoid Aliasing 4.8.2 A/D Conversion 4.8.3 Analysis of Quantization Errors 4.8.4 D/A Conversion 4.9 Oversampling and Noise Shaping in A/D and D/A Conversion 4.9.1 Oversampled A/D Conversion with Direct Quantization 4.9.2 Oversampled A/D Conversion with Noise Shaping 4.9.3 Oversampling and Noise Shaping in D/A Conversion 4.10 Summary Problems 5 Transform Analysis of Linear Time-Invariant Systems 5.0 Introduction 5.1 The Frequency Response of LTI Systems 5.1.1 Frequency Response Phase and Group Delay 5.1.2 Illustration of Effects of Group Delay and Attenuation 5.2 System Functions—Linear Constant-Coefficient Difference Equations 5.2.1 Stability and Causality 5.2.2 Inverse Systems 5.2.3 Impulse Response for Rational System Functions 5.3 Frequency Response for Rational System Functions 5.3.1 Frequency Response of 1st-Order Systems 5.3.2 Examples with Multiple Poles and Zeros 5.4 Relationship between Magnitude and Phase 5.5 All-Pass Systems 5.6 Minimum-Phase Systems 5.6.1 Minimum-Phase and All-Pass Decomposition 5.6.2 Frequency-Response Compensation of Non-Minimum-Phase Systems 5.6.3 Properties of Minimum-Phase Systems 5.7 Linear Systems with Generalized Linear Phase 5.7.1 Systems with Linear Phase 5.7.2 Generalized Linear Phase 5.7.3 Causal Generalized Linear-Phase Systems 5.7.4 Relation of FIR Linear-Phase Systems to Minimum-Phase Systems 5.8 Summary Problems 6 Structures for Discrete-Time Systems 6.0 Introduction 6.1 Block Diagram Representation of Linear Constant-Coefficient Difference Equations 6.2 Signal Flow Graph Representation 6.3 Basic Structures for IIR Systems 6.3.1 Direct Forms 6.3.2 Cascade Form 6.3.3 Parallel Form 6.3.4 Feedback in IIR Systems 6.4 Transposed Forms 6.5 Basic Network Structures for FIR Systems 6.5.1 Direct Form 6.5.2 Cascade Form 6.5.3 Structures for Linear-Phase FIR Systems 6.6 Lattice Filters 6.6.1 FIR Lattice Filters 6.6.2 All-Pole Lattice Structure 6.6.3 Generalization of Lattice Systems 6.7 Overview of Finite-Precision Numerical Effects 6.7.1 Number Representations 6.7.2 Quantization in Implementing Systems 6.8 The Effects of Coefficient Quantization 6.8.1 Effects of Coefficient Quantization in IIR Systems 6.8.2 Example of Coefficient Quantization in an Elliptic Filter 6.8.3 Poles of Quantized 2nd-Order Sections 6.8.4 Effects of Coefficient Quantization in FIR Systems 6.8.5 Example of Quantization of an Optimum FIR Filter 6.8.6 Maintaining Linear Phase 6.9 Effects of Round-off Noise in Digital Filters 6.9.1 Analysis of the Direct Form IIR Structures 6.9.2 Scaling in Fixed-Point Implementations of IIR Systems 6.9.3 Example of Analysis of a Cascade IIR Structure 6.9.4 Analysis of Direct-Form FIR Systems 6.9.5 Floating-Point Realizations of Discrete-Time Systems 6.10 Zero-Input Limit Cycles in Fixed-Point Realizations of IIR Digital Filters 6.10.1 Limit Cycles Owing to Round-off and Truncation 6.10.2 Limit Cycles Owing to Overflow 6.10.3 Avoiding Limit Cycles 6.11 Summary Problems 7 Filter Design Techniques 7.0 Introduction 7.1 Filter Specifications 7.2 Design of Discrete-Time IIR Filters from Continuous-Time Filters 7.2.1 Filter Design by Impulse Invariance 7.2.2 Bilinear Transformation 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters 7.3.1 Examples of IIR Filter Design 7.4 Frequency Transformations of Lowpass IIR Filters 7.5 Design of FIR Filters by Windowing 7.5.1 Properties of Commonly Used Windows 7.5.2 Incorporation of Generalized Linear Phase 7.5.3 The KaiserWindow Filter Design Method 7.6 Examples of FIR Filter Design by the KaiserWindow Method 7.6.1 Lowpass Filter 7.6.2 Highpass Filter 7.6.3 Discrete-Time Differentiators 7.7 Optimum Approximations of FIR Filters 7.7.1 Optimal Type I Lowpass Filters 7.7.2 Optimal Type II Lowpass Filters 7.7.3 The Parks–McClellan Algorithm 7.7.4 Characteristics of Optimum FIR Filters 7.8 Examples of FIR Equiripple Approximation 7.8.1 Lowpass Filter 7.8.2 Compensation for Zero-Order Hold 7.8.3 Bandpass Filter 7.9 Comments on IIR and FIR Discrete-Time Filters 7.10 Design of an Upsampling Filter 7.11 Summary Problems 8 The Discrete Fourier Transform 8.0 Introduction 8.1 Representation of Periodic Sequences: The Discrete Fourier Series 8.2 Properties of the DFS 8.2.1 Linearity 8.2.2 Shift of a Sequence 8.2.3 Duality 8.2.4 Symmetry Properties 8.2.5 Periodic Convolution 8.2.6 Summary of Properties of the DFS Representation of Periodic Sequences 8.3 The Fourier Transform of Periodic Signals 8.4 Sampling the Fourier Transform 8.5 Fourier Representation of Finite-Duration Sequences 8.6 Properties of the DFT 8.6.1 Linearity 8.6.2 Circular Shift of a Sequence 8.6.3 Duality 8.6.4 Symmetry Properties 8.6.5 Circular Convolution 8.6.6 Summary of Properties of the DFT 8.7 Linear Convolution Using the DFT 8.7.1 Linear Convolution of Two Finite-Length Sequences 8.7.2 Circular Convolution as Linear Convolution with Aliasing 8.7.3 Implementing Linear Time-Invariant Systems Using the DFT 8.8 The Discrete Cosine Transform (DCT) 8.8.1 Definitions of the DCT 8.8.2 Definition of the DCT-1 and DCT-2 8.8.3 Relationship between the DFT and the DCT-1 8.8.4 Relationship between the DFT and the DCT-2 8.8.5 Energy Compaction Property of the DCT-2 8.8.6 Applications of the DCT 8.9 Summary Problems 9 Computation of the Discrete Fourier Transform 9.0 Introduction 9.1 Direct Computation of the Discrete Fourier Transform 9.1.1 Direct Evaluation of the Definition of the DFT 9.1.2 The Goertzel Algorithm 9.1.3 Exploiting both Symmetry and Periodicity 9.2 Decimation-in-Time FFT Algorithms 9.2.1 Generalization and Programming the FFT 9.2.2 In-Place Computations 9.2.3 Alternative Forms 9.3 Decimation-in-Frequency FFT Algorithms 9.3.1 In-Place Computation 9.3.2 Alternative Forms 9.4 Practical Considerations 9.4.1 Indexing 9.4.2 Coefficients 9.5 More General FFT Algorithms 9.5.1 Algorithms for Composite Values of N 9.5.2 Optimized FFT Algorithms 9.6 Implementation of the DFT Using Convolution 9.6.1 Overview of the Winograd Fourier Transform Algorithm 9.6.2 The Chirp Transform Algorithm 9.7 Effects of Finite Register Length 9.8 Summary Problems 10 Fourier Analysis of Signals Using the Discrete Fourier Transform 10.0 Introduction 10.1 Fourier Analysis of Signals Using the DFT 10.2 DFT Analysis of Sinusoidal Signals 10.2.1 The Effect of Windowing 10.2.2 Properties of the Windows 10.2.3 The Effect of Spectral Sampling 10.3 The Time-Dependent Fourier Transform 10.3.1 Invertibility of X[n,) 10.3.2 Filter Bank Interpretation of X[n,) 10.3.3 The Effect of the Window 10.3.4 Sampling in Time and Frequency 10.3.5 The Overlap–Add Method of Reconstruction 10.3.6 Signal Processing Based on the Time-Dependent Fourier Transform 10.3.7 Filter Bank Interpretation of the Time-Dependent Fourier Transform 10.4 Examples of Fourier Analysis of Nonstationary Signals 10.4.1 Time-Dependent Fourier Analysis of Speech Signals 10.4.2 Time-Dependent Fourier Analysis of Radar Signals 10.5 Fourier Analysis of Stationary Random Signals: the Periodogram 10.5.1 The Periodogram 10.5.2 Properties of the Periodogram 10.5.3 Periodogram Averaging 10.5.4 Computation of Average Periodograms Using the DFT 10.5.5 An Example of Periodogram Analysis 10.6 Spectrum Analysis of Random Signals 10.6.1 Computing Correlation and Power Spectrum Estimates Using theDFT 10.6.2 Estimating the Power Spectrum of Quantization Noise 10.6.3 Estimating the Power Spectrum of Speech 10.7 Summary Problems 11 Parametric Signal Modeling 11.0 Introduction 11.1 All-Pole Modeling of Signals 11.1.1 Least-Squares Approximation 11.1.2 Least-Squares Inverse Model 11.1.3 Linear Prediction Formulation of All-Pole Modeling 11.2 Deterministic and Random Signal Models 11.2.1 All-Pole Modeling of Finite-Energy Deterministic Signals 11.2.2 Modeling of Random Signals 11.2.3 Minimum Mean-Squared Error 11.2.4 Autocorrelation Matching Property 11.2.5 Determination of the Gain Parameter G 11.3 Estimation of the Correlation Functions 11.3.1 The Autocorrelation Method 11.3.2 The Covariance Method 11.3.3 Comparison of Methods 11.4 Model Order 11.5 All-Pole Spectrum Analysis 11.5.1 All-Pole Analysis of Speech Signals 11.5.2 Pole Locations 11.5.3 All-Pole Modeling of Sinusoidal Signals 11.6 Solution of the Autocorrelation Normal Equations 11.6.1 The Levinson–Durbin Recursion 11.6.2 Derivation of the Levinson–Durbin Algorithm 11.7 Lattice Filters 11.7.1 Prediction Error Lattice Network 11.7.2 All-Pole Model Lattice Network 11.7.3 Direct Computation of the k-Parameters 11.8 Summary Problems 12 Discrete Hilbert Transforms 12.0 Introduction 12.1 Real- and Imaginary-Part Sufficiency of the Fourier Transform 12.2 Sufficiency Theorems for Finite-Length Sequences 12.3 Relationships Between Magnitude and Phase 12.4 Hilbert Transform Relations for Complex Sequences 12.4.1 Design of Hilbert Transformers 12.4.2 Representation of Bandpass Signals 12.4.3 Bandpass Sampling 12.5 Summary Problems 13 Cepstrum Analysis and Homomorphic Deconvolution 13.0 Introduction 13.1 Definition of the Cepstrum 13.2 Definition of the Complex Cepstrum 13.3 Properties of the Complex Logarithm 13.4 Alternative Expressions for the Complex Cepstrum 13.5 Properties of the Complex Cepstrum 13.5.1 Exponential Sequences 13.5.2 Minimum-Phase and Maximum-Phase Sequences 13.5.3 Relationship Between the Real Cepstrum and the Complex Cepstrum 13.6 Computation of the Complex Cepstrum 13.6.1 Phase Unwrapping 13.6.2 Computation of the Complex Cepstrum Using the Logarithmic Derivative 13.6.3 Minimum-Phase Realizations for Minimum-Phase Sequences 13.6.4 Recursive Computation of theComplexCepstrum forMinimumand Maximum-Phase Sequences 13.6.5 The Use of Exponential Weighting 13.7 Computation of the Complex Cepstrum Using Polynomial Roots 13.8 Deconvolution Using the Complex Cepstrum 13.8.1 Minimum-Phase/Allpass Homomorphic Deconvolution 13.8.2 Minimum-Phase/Maximum-Phase Homomorphic Deconvolution 13.9 The Complex Cepstrum for a Simple Multipath Model 13.9.1 Computation of the Complex Cepstrum by z-Transform Analysis 13.9.2 Computation of the Cepstrum Using the DFT 13.9.3 Homomorphic Deconvolution for the Multipath Model 13.9.4 Minimum-Phase Decomposition 13.9.5 Generalizations 13.10 Applications to Speech Processing 13.10.1 The Speech Model 13.10.2 Example of Homomorphic Deconvolution of Speech 13.10.3 Estimating the Parameters of the Speech Model 13.10.4 Applications 13.11 Summary Problems A Random Signals B Continuous-Time Filters C Answers to Selected Basic Problems Bibliography Index
你還可能感興趣
我要評(píng)論
|