Lars Ahlfors 的這本關于擬共形映射的講義是基于1964 年春季學期在哈佛大學的一門課程形成的, 1966年第一次出版,不久便被公認為注定會成為經典的著作。這些講義從一開始就講述了擬共形理論, 給出了一個對Beltrami 方程自足式的處理,并講述了Teichmüller 空間的基本性質,包括Bers 嵌入和Teichmüller 曲線。引人注目的是,Ahlfors 是如何直接深入事物的核心,以最少的預備知識講述了重要的結果的。許多研究生和其他一些數學家從這些講義中已經學到了擬共形映射和Teichow.asp?id=93420
Preface
The Ahlfors Lectures
Acknowledgments
Chapter I. Differentiable Quasiconformal Mappings
A. The Problem and Definition of Grotzsch
B. Solution of Grotzschis Problem
C. Composed Mappings
D. ExtremalLength
E. A Symmetry Principle
F. Dirichletlntegrals
Chapter II. The General Definition
A. The Geometric Approach
B. The Analytic Definition
Chapter III. Extremal Geometric Properties
A. Three Extremal Problems
B. Elliptic and Modular Functions
C. Mori/s Theorem
D. Quadruplets
Chapter IV. Boundary Correspondence
A. The M-condition
B. The Sufficiency of the M-condition
C. Quasi-isometry
D. QuasiconformalReflection
E. The Reverse Inequality
Chapter V. The Mapping Theorem
A. Two Integral Operators
B. Solution of the Mapping Problem
C. Dependence on Parameters
D. The Calderon-Zygmund Inequality
Chapter VI. Teichmuller Spaces
A. Preliminaries
B. Beltrami Differentials
C. A Is Open
D. The Infinitesimal Approach
Editors Notes
The Additional Chapters
A Supplement to Ahlfors's Lectures
CLIFFORD J. EARLE AND IRWIN KRA
Complex Dynamics and Quasiconformal Mappings
MITSUHIRO SHISHIKURA
Hyperbolic Structures on Three-Manifolds that Fiber over the Circle
JOHN H. HUBBARD