結(jié)構(gòu)動力學(xué)(英文版) [Structural Dynamics]
定 價:58 元
叢書名:高等學(xué)校機械基礎(chǔ)課程系列教材
- 作者:周思達,[比] 沃德·海倫,劉莉
- 出版時間:2016/9/1
- ISBN:9787568231008
- 出 版 社:北京理工大學(xué)出版社
- 中圖法分類:O342
- 頁碼:286
- 紙張:膠版紙
- 版次:1
- 開本:16K
《結(jié)構(gòu)動力學(xué)(英文版)》從工程結(jié)構(gòu)的動力學(xué)設(shè)計與分析的需求入手,闡述工程設(shè)計與分析中的結(jié)構(gòu)動力學(xué)問題,結(jié)構(gòu)動力學(xué)的基本假設(shè)、任務(wù)、載荷類型、離散途徑和建模方法;介紹典型連續(xù)結(jié)構(gòu)系統(tǒng)的動力學(xué)建模方法和特殊邊界與載荷條件下的解;重點介紹結(jié)構(gòu)動力學(xué)的時域分析方法,包括不同邊界和載荷條件下單自由度系統(tǒng)的特征分析方法和響應(yīng)求解方法,以及多自由度系統(tǒng)的響應(yīng)數(shù)值求解方法與特征值問題,從而引出多自由度系統(tǒng)的實模態(tài)分析;面向結(jié)構(gòu)的動力學(xué)設(shè)計,介紹結(jié)構(gòu)動力學(xué)的頻域方法,在復(fù)數(shù)域建立結(jié)構(gòu)的傳遞函數(shù)、頻率響應(yīng)函數(shù),從而闡釋結(jié)構(gòu)的復(fù)頻域分析方法與模態(tài)參數(shù);總結(jié)并介紹結(jié)構(gòu)動力學(xué)的反問題之一——實驗?zāi)B(tài)分析!督Y(jié)構(gòu)動力學(xué)(英文版)》為全英文編寫,面向研究型大學(xué)研究生培養(yǎng)的國際化和工程領(lǐng)域的全球化需求,借助國外知名高校的經(jīng)典參考書的成功經(jīng)驗和人員基礎(chǔ),符合國際學(xué)術(shù)水平、國內(nèi)實際需求,為相關(guān)教學(xué)和工程研究提供良好的支持。
本書可作為高等院校相關(guān)專業(yè)的教材
1 Introduction to Structural Dynamics
1.1 Essential Characteristics and Basic Assumptions
1.1.1 Essential Characteristics
1.1.2 Basic Assumptions in Structural Dynamics of This Book
1.2 Missions of Structural Dynamics
1.2.1 Response Analysis
1.2.2 Inverse Problem of Type I: System Identification
1.2.3 Inverse Problem Type II: Load Identification
1.2.4 Vibration Control
1.3 Types of Dynamic Loads
1.3.1 Periodic Load
1.3.2 Impulsive Load
1.3.3 Random Load
1.4 Formulation of the Equations of Motion
1.4.1 Direct Equilibration Using d'Alembert's Principle
1.4.2 Variational Approach
1.5 Continuous and Discrete Structural Systems
References
2 Time-Domain Analysis of Continuous Systems
2.1 Free Transverse Vibration of Strings
2.2 Free Axial Vibration of Elastic Rods
2.3 Free Torsional Vibration of Cylinder Rods
2.4 Free Transverse Vibration of Euler-Bernoulli Beams
2.4.1 Simple Supported Beams
2.4.2 Cantilever Beams
2.4.3 Fixed-Fixed Beams
2.4.4 Free-Free Beams
2.5 Free Transverse Vibration of Rectangular Thin Plates
2.5.1 Kinematic Description
2.5.2 Equilibrium Equation
2.5.3 Boundary Conditions
2.5.4 Solutions of Rectangular Thin Plates with Simple-supported Edges
2.6 Some Properties of Natural Modes
2.6.1 Orthogonality of Mode Shapes
2.6.2 Modal Scaling
2.6.3 Expansion Theorem
2.6.4 Rayleigh Quotient
Problems
References
3 Time-Domain Analysis of SDOF Systems
3.1 From Continuous Systems to Generalized SDOF Systems
3.1.1 Historical Rayleigh's Method
3.1.2 An Improved Approach of Rayleigh's Method
3.2 Mathematical Modelling of Lumped-Parameter Systems
3.2.1 Direct Equilibration Modeling Using d'Alembert's Principle
3.2.2 Modeling Based on Principle of Virtual Displacements
3.3 Free Vibration of SDOF Systems
3.3.1 Free Vibration of Undamped SDOF Systems
3.3.2 Free Vibration of Viscous-Damped SDOF Systems
3.4 Dynamic Behavior of Undamped SDOF Systems under Harmonic Excitation
3.5 Viscous-Damped SDOF Systems to Harmonic Excitation
3.5.1 General Solution
3.5.2 Steady-State Response
3.5.3 Complex Expression of the Response
3.5.4 Resonance Response
3.5.5 Forced Vibration by Support Motion
3.5.6 Vibration Isolation
3.5.7 Motion Transducer
3.6 Expansion to Periodic Excitation via Fourier Series
3.6.1 Fourier Series for Arbitrary Periodic Functions
3.6.2 Steady-State Response under Arbitrary Periodic Excitations
3.7 Response to Impulsive Loading
3.7.1 Pulse Excitation
3.7.2 Shock Response Spectrum
3.7.3 Shock Isolation
3.8 Response of SDOF Systems in Case of the General Dynamic Excitation
3.8.1 Impulse Function
3.8.2 Impulse Response
3.8.3 Duhamel Integration
3.8.4 Arbitrary Support Motion
3.9 Damping
3.9.1 Damping Models in Structural Dynamics
3.9.2 Energy Losses and Equivalent Viscous Damping
3.9.3 Illustration of the Errors Due to the Equivalence
Problems
References
4 Time-Domain Analysis of MDOF Systems
4.1 Continuous Systems to MDOF Systems: Discretization Approaches
4.1.1 Direct Lumped-Parameter Methods
4.1.2 Generalized Displacements & Rayleigh-Ritz's Methods
4.1.3 Assumed Mode Method: a Realization of General Rayleigh-Ritz Methods
4.1.4 Choosing the Shape Functions
4.1.5 Finite Element Method
4.2 Modeling of Equations of Motion for MDOF Systems
4.2.1 Direct Equilibration Modeling Using d'Alembert's Principle
4.2.2 Modeling with Principle of Virtual Displacements
4.2.3 Modeling with Lagrange's Equations
4.3 Free Vibration of Undamped MDOF Systems
4.3.1 Eigenvalue Problem, Natural Frequencies and Mode Shapes
4.3.2 Orthogonality
4.3.3 Modal Scaling
4.3.4 Eigenvalue Separation Property
4.4 Rayleigh and Rayleigh-Ritz's Methods for MDOF Systems: Model Reduction
4.4.1 Rayleigh Quotient for MDOF Systems
4.4.2 Rayleigh's Method for MDOF Systems
4.4.3 Rayleigh-Ritz's Method for MDOF Systems
4.4.4 Assumed Mode Method for MDOF Systems
4.5 MDOF Systems with Rigid-Body Modes
4.5.1 Small Fictitious Stiffness
4.5.2 Eigenvalue Shifting
4.5.3 Constraining of Rigid-Body Modes
4.6 Damping in MDOF systems
4.7 Numerical Evaluation of Responses of MDOF Systems
4.7.1 Numerical Derivatives
4.7.2 Central Difference Method
4.7.3 Newmark-β Method
4.8 Dynamic Response of MDOF Systems: Mode Superposition Method
4.8.1 Transformation of Coordinates
4.8.2 Modal Damping
4.8.3 Initial Conditions in Modal Coordinates
4.8.4 Mode Superposition for Free Vibration of Undamped MDOF Systems
4.8.5 Mode Superposition of Free Vibration of Damped MDOF Systems
4.8.6 Mode Superposition of Forced Vibration of Undamped MDOF Systems
4.8.7 Mode Superposition of Forced Vibration of Damped MDOF Systems
4.8.8 Mode-Displacement Solution and Mode-Acceleration Solution
Problems
References
5 Frequency-Domain Analysis
5.1 Frequency-Domain Analysis of SDOF Systems
5.1.1 System Equations and Transfer Function
5.1.2 Poles, Natural Frequencies, Damping Ratio and Residues
5.1.3 Transfer Function Plots
5.1.4 Frequency Response Function and Impulse Response Function
5.1.5 Influence of Mass, Damping and Stiffness Changes -.
5.2 Frequency-Domain Analysis of MDOF Systems
5.2.1 System Equations and Transfer Function
5.2.2 Poles, Natural Frequencies and Damping Ratio
5.2.3 Modal Vectors and Residues
5.2.4 Modal Participation Factors
5.2.5 Frequency Response Function Matrix and Impulse Response Function Matrix
5.2.6 Undamped and Proportionally Damped Systems
5.2.7 Orthogonality
5.2.8 Modal Vector Scaling
5.2.9 Numerical and Experimental Approaches
References
6 Experimental Modal Analysis and Applications
6.1 Basic Modal Model Equations
6.1.1 Modal Model
6.1.2 State Space Model
6.1.3 Rational Fraction Polynomial Model
6.2 Modal Parameter Estimation
6.2.1 Basic Concept
6.2.2 SDOF Methods
6.2.3 MDOF Time-Domain Methods
6.2.4 MDOF Frequency-Domain Methods
6.2.5 Output-Only or Operational Modal Analysis
6.2.6 Conclusions
6.3 Modal Validation
6.3.1 Modal Scale Factor and Modal Assurance Criterion
6.3.2 Mode Participation
6.3.3 Reciprocity
6.3.4 Mode Complexity
6.3.5 Modal Phase Collinearity and Mean Phase Deviation
6.3.6 Modal Confidence Factor
6.3.7 Synthesis of Frequency Response Functions
6.3.8 Discussion
6.4 Applications of Modal Parameters
6.4.1 Forced Response Analysis
6.4.2 Sensitivity Analysis
6.4.3 Structural Dynamics Modification & Assembly
6.5 Combining Numerical and Experimental Models
6.5.1 Model Updating
6.5.2 Pre-Test Analysis
References